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Structural Analysis – SA12 
Deflection in Beams - The Double Integration Method 
 

This lecture describes the use of the double integration method for calculating deflection in 
beams. Given a statically determinate beam, the method enables us to derive an algebraic 
equation that describes its deformed shape.  
 

Figure 1 shows a simply supported beam subjected to a generalized load. The deformed shape of 
the beam, called its elastic curve, is shown using dashed lines.  

 

Figure 1: A simply supported beam and its elastic curve 

Let’s denote the beam’s deflection as v. Since the deflection varies along the x-axis, v is a 
function of x.  
 
The beam rests on a pin and a roller at its ends, therefore, v evaluates to zero at the end points. 
However, its values are not known within the length of the beam. Here, our objective is to 
determine an equation for v that enables us to calculate the deflection at any point along the 
length of the beam.   
 

We start the derivation by drawing a tangent line to the elastic curve at an arbitrary point along 
the x-axis, as shown in Figure 2.  

 

  
  
 

  
Figure 2: The slope of an elastic curve at an arbitrary point 

The tangent line forms a right triangle with the horizontal and vertical axes. In the figure above, 
the sides of the triangle are labeled dx and dv. Therefore, the angle that the tangent line makes 
with the horizontal axis, denoted by θ , can be defined in the following manner. 

 tan(θ) d /dx= v   [1] 
 
Since deflections in a typical beam are relatively small, we can assume that θ  is a small angle. 
Therefore, we can equate the tangent of θ  to the angle itself. That is, if θ  is given in radians, we 
can write: tan(θ) θ= . 
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Consequently, Equation [1] can be rewritten as follows. 

 tan(θ) d /dx θ= =v  [2] 
 

Or, 

 d θ dx=v  [3] 
 

By integrating both sides of Equation [3], we can obtain v in an integral form, as shown below. 

  

 d θ dx θ dx= ⇒ =∫ ∫ ∫v v   [4] 
 

To complete our derivation, we need to integrate the right side of Equation [4]. However, before 
doing so, we must express θ  in terms of x. This can be done by writing θ  in terms of the beam’s 
bending moment equation, which is written in terms of x.  

To relate θ  to the beam’s bending moment, let’s visualize the deformed shape of the beam as 
shown below.  

 

 

 

 

 

Figure 3: The deformed shape of a beam segment due to a positive bending moment 

When the beam is subjected to a positive bending moment, its top fibers undergo compression 
while the bottom fibers experience tension. As depicted in Figure 4, the compression and tension 
zones are naturally separated along a plane located in the middle part of the beam.  

 

Figure 4: The compression and tension zones in a typical beam segment 
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Figure 5 shows two neighboring planes in the compression zone of a beam segment. They are 
labeled plane A and plane B. Since plane A is at the outer surface, its fibers are being 
compressed more than the fibers on plane B, which is located below plane A. The amount of 
compression in a fiber reduces in relation to its proximity to the middle of the beam. The closer 
the fiber is to the middle of the beam, the less compression it experiences. 

 

Figure 5: Two compression planes in a beam segment 

Beam fibers in the tension zone behave in a similar manner. The fibers closer to the middle part 
of the beam are going to be elongated less than the fibers closer to the surface. Therefore, there 
must be a surface inside the beam where the fibers are neither compressed nor elongated. This 
surface, which separates the tension from the compression zone, is called the neutral surface (see 
Figure 6). 

 

 

 

 

Figure 6: The neutral surface in a beam 

When a beam is being examined in the two-dimensional space, we refer to the neutral surface as 
the neutral axis. Figure 7 depicts a two-dimensional beam and its neutral axis. When a beam 
bends, all of its fibers change length, except for the fibers along its neutral axis.   

 

 

 

 

Figure 7: The neutral axis in a beam 

 

Consider a thin slice of a beam having a width denoted by dx, as depicted below. 
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Figure 8: A thin slice of a beam 

 
Figure 9 represents the deformed shape of the thin slice caused by a positive bending moment.  
 

 

Figure 9: A deformed beam segment due to a positive bending moment 

 
Let’s refer to the arc length along the neutral axis of the beam slice as ds. The arc can be 
assumed to be that of a circle having r as its radius. We refer to r as the radius of curvature. From 
basic geometry, we can write the following relationship relating r, ds, and dθ . 

 r dθ ds=   [5] 
 

Note that dθ  is the difference between the end slopes 1θ  and 2θ , as illustrated in the figure 
below. 

 

 

 

 

 

 
Figure 10: The relationship between dθ and the end slopes in a beam segment 
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Since length ds is along the beam’s neutral axis, it equals dx (ds = dx). Therefore, Equation [5] 
can be rewritten as Equation [6]. 

 r dθ dx=   [6] 
Or: 

 1dθ dx
r

=  [7] 

 

Integrating both sides of Equation [7], the following equation results. 

 1θ dx
r

=∫   [8] 

 

Equation [8] represents θ  in terms of the radius of curvature (r). Now we need to write r in terms 
of the bending moment (M).  
 

The amount of deflection in a beam is directly proportional to the magnitude of the bending 
moment.  The larger the bending moment, the larger the deflection. Furthermore, the radius of 
curvature is inversely proportional to the magnitude of the bending moment. That is, as the 
bending moment becomes larger and larger, the radius of curvature gets smaller and smaller, as 
illustrated below.  

 

Figure 11: The relationship between the bending moment and radius of curvature in a beam 

 
For linear elastic material, the product of M and r remains constant. This constant is a function of 
the geometry and material properties of the beam. More specifically, M r E I=  where E is the 
modulus of elasticity of the material and I is the moment of inertia of the cross-section of the 
beam about the axis of bending (see Figure 12). 
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Figure 12: Axis of bending in a typical beam 

 

We can express the relationship between r, M, E, and I using the following equation. 

 1 M
r EI
=   [9] 

 

Then, Equation [9] can be used to rewrite Equation [8]. 

 1 Mθ dx θ dx
r EI

= ⇒ =∫ ∫   [10] 

 

And since θ dx=∫v  (see Equation [4]), Equation [10] becomes: 

 2M d x
EI

=∫∫v   [11] 

 

Given that the bending moment (M) is an algebraic expression in terms of x, Equation [11] gives 
v in term of x. Let’s see how.  
 

Consider a cantilever beam subjected to a concentrated load of P at its free end. The beam’s 
length is L. We wish to formulate an equation for the beam’s elastic curve. 

 

 

 

 
Figure 13: A cantilever beam subjected to a concentrated load 
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Figure 14 shows the free-body diagram and the bending moment equation for the cantilever 
beam.   

 

 

 

 

  
 

Figure 14: The free-body diagram for a cantilever beam 

 

Therefore, Equation [11] can be expanded as follows. 

 

 2 2M 1v(x) d x (Px PL) d x
EI EI

= = −∫∫ ∫∫   [12] 

 

Note that the right side of the equation is a double integral expression. If we integrate the 
expression once, we get: 

 2
1

1 1v(x) ( Px PLx C )dx
EI 2

= − +∫   [13] 

 

Now we can obtain the algebraic expression for v by integrating Equation [13].  

 3 2
1 2

1 1 1v(x) ( Px PLx C x C )
EI 6 2

= − + +   [14] 

 

Equation [14] consists of two integration constants: 1C  and 2C . They can be determined using 
the imposed boundary conditions on the beam. There are two imposed boundary conditions on 
this particular beam: (1) The beam’s deflection at x = 0 is zero; (2) The slope of the elastic curve 
at x = 0 is zero.  

Using Equation [14], the first boundary condition can be written in the following form. 
 
 3 2

1 2
1 1 1v(0) ( P 0 PL 0 C 0 C ) 0
EI 6 2

= × − × + × + =   [15] 
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Solving the above equation for 2C , we get: 2C 0= . To apply the second boundary condition, we 
need to use the slope equation. Since slope is the first derivative of deflection with respect to x, 
we can write: 

 2
1

d 1 1θ(x) ( Px PLx C )
dx EI 2

= = − +
v   [16] 

 

Setting slope to zero at x = 0, we can write:  
 
 2

1
1 1θ(0) ( P 0 PL 0 C ) 0
EI 2

= × − × + =   [17] 

 
The above equation yields: 1C 0= . Therefore, the deflection equation can be written as: 
 
 3 21 1 1v(x) ( Px PLx )

EI 6 2
= −  [18] 

 
Equation [18] is the algebraic expression for the deflection of the beam shown in Figure 13. The 
equation is valid for any x value between 0 and L.  
 
Let’s solve another problem. Consider the simply supported beam shown in Figure 15. Assuming 
the beam has a constant EI, we wish to formulate its deflection equation. 
 

 
Figure 15: A simply supported beam 

 
The moment equation for the beam is given in the figure below.  
 

 
Figure 16: The free-body diagram and bending moment equation for a simply supported beam 
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Starting from Equation [11], we can express the deflection equation for the beam in the 
following form. 
 
 2 2 2M 1v(x) d x (500x 50x ) d x

EI EI
= = −∫∫ ∫∫   [19] 

 
 
Integrating the right side of Equation [19] with respect to x twice, we obtain the following 
algebraic expression for v.  
 
 3 4

1 2
1 250 25v(x) ( x x C x C )
EI 3 6

= − + +   [20] 

 
We now need to apply the boundary conditions in order to determine the integration constants 

1C  and 2C . For this beam the boundary conditions are: (1) The deflection of the beam at x = 0 is 
zero; (2) The deflection of the beam at x = 10 is zero. 
 
The first boundary condition gives us the following expression.  
 
 3 4

1 2
1 250 25v(0) ( 0 0 C 0 C ) 0
EI 3 6

= − + × + =   [21] 

 
Therefore, 2C 0= . The second boundary condition yields the following equation.  
 
 3 4

1
1 250 25v(10) ( 10 10 C 10) 0
EI 3 6

= − + × =   [22] 

 

Solving the above equation for 1C , we get: 1
12500C

3
−

= . Therefore, the deflection equation for 

the beam can be written as: 
 
 3

225x xv(x) (10x 500)
3EI 2

= − −   [23] 

 
The above deflection equation is valid for any x value between 0 and 10 meters. We can use it to 
calculate the deflection at any point along the x-axis, or to graph the beam’s elastic curve when 
the need arises. 


