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Structural Analysis – SA58 
Analysis of a Continuous Tapered Beam using the Slope-deflection Method 

 

Consider the continuous two-span railroad bridge shown below. It is a non-prismatic beam with 

a deep section at point B that tapers to a shallower depth at ends A and C.   

 

Figure 1: A continuous tapered beam 

 

Since the cross-section of the beam does not have a constant moment of inertia (I), the standard 

slope-deflection equations do not apply. We need a revised formulation that takes the variable 

moment of inertia into account for modeling and solving the problem. 

This document consists of two main parts. In Part 1, we develop the revised slope-deflection 

formulation. In Part 2, we apply the formulation to analyze the non-prismatic beam shown in 

Figure 1. 

 

Part 1: Revised Slope-Deflection Formulation 

To make the derivation and the resulting equations manageable, we start by defining the ratio of 

the end heights of a tapered beam. The height at end A is assumed to be 0h and the height at the 

right end of the beam, at point B, is set to 04h , as shown in Figure 2.  

 

Figure 2: Beam with a variable moment of inertia 
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Given the nonlinear shape of the beam, its height can be represented using a quadratic equation, 

like this: 
2h(x) a bx cx= + + where coefficients a, b, and c are to be determined using three 

boundary conditions. At x = 0, the function should return 0h ; at x = L, the height is 04h ; and 

the slope of the curve at x = 0 is zero. Writing these conditions in algebraic form, we get: 

 = + + =2
0h(0) a b(0) c(0) h  [1] 

 = + + =2
0h(L) a b(L) c(L) 4h  [2] 

 = + ='h (0) b 2c(0) 0  [3] 

 

Solving the above equations for the unknown coefficients results in: 

 
= = = 0

0 2

3h
a h ,b 0,c

L
 

 

 

Substituting these values in the expression for h(x), the height function becomes: 

 
= + 2

0 0

x
h(x) h 3h ( )

L
 [4] 

 

Let us assume a rectangular cross-section for the beam. Then, we can express the moment of inertia 

in terms of h(x), like this: 

 
= 31

f(x) bh (x)
12

 [5] 

 

Substituting Equation [4] in [5], we get: 

 

= +
3 2

30
2

bh x
f(x) (1 3 )

12 L
 [6] 

 

Using 

3
0

0

bh

12
=I as the moment of inertia of the beam at end A, f(x) can be written as: 

 2
3

0 2

x
f(x) (1 3 )

L
= +I  [7] 
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Now that we have the moment of inertia expressed as a function of x, we are ready to proceed 

with the revised slope-deflection formulation.  

 

Let’s label the end rotations of the beam as Aθ and Bθ , and refer to the end moments as ABM  and 

BAM , as shown in Figure 3. Note that all four parameters are shown in the counterclockwise 

(positive) direction. The beam is assumed to be simply supported. 

 

Figure 3: Positive end rotations and moments in a beam  

 

We intend to write the slope-deflection equations for this tapered beam. This means we wish to 

express the end moments ( ABM  and BAM ) in terms of the end rotations ( Aθ and Bθ ), w, L, and 

section and material properties. To do so, we are going to use the principle of superposition 

coupled with the method of virtual work. 

 

To start, we need to write Aθ  in terms of  ABM , BAM and w. We can determine this relationship by 

placing  ABM , BAM , and w on the beam, as applied loads, and calculate the end rotation that each 

causes. Figures [4a], [4b], and [4c] show the beam subjected to each load.  
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(a) Beam subjected to ABM   

 

 

(b) Beam subjected to BAM  

 

 

(c) Beam subjected to distributed load w 

 

Figure 4: Loads applied to a tapered beam decoupled    

 

We can determine these end rotations, referred to as Aaθ , Abθ , and Acθ  in the figure, using the 

virtual work method. Then, using the principle of superposition, we can calculate the total end 

rotation this way: 

 = + +A Aa Ab Acθ θ θ θ  [8] 
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Similarly, after computing Baθ , Bbθ and Bcθ , we can determine the total rotation at B using the 

following equation: 

 = + +B Ba Bb Bcθ θ θ θ  [9] 

 

According to the virtual work method, the rotation at end A due to ABM , shown in Figure [4a], 

can be expressed as: 

 L

Aa 0

M(x)m(x)
θ dx

E
=

I
 [10] 

 

Where M(x) is the bending moment equation due to the applied load, here ABM , and  

m(x) is the bending moment equation due to a virtual unit moment placed in the direction of 

Aaθ . Please keep in mind that the moment of inertia (I) is defined using algebraic function f(x) 

per Equation [7].  

 

The free-body diagram of the beam subjected to a unit moment in the direction of ABM is shown 

in Figure 5.  

 

Figure 5: Tapered beam subjected to a unit counterclockwise moment at A 
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Note the bending moment expression in the figure; it is: (x/L) – 1. If we multiply it by ABM , we 

get the expression for M(x), as shown below. 

 
= −AB

x
M(x) M ( 1)

L
 [11] 

 

In Equation [10], m(x) refers to bending moment equation for the beam due to a unit moment 

placed in the direction of Aaθ . We have already determined this moment (see Figure 6), it is:  

m(x) = (x/L) – 1. Therefore, Equation [10] can be written as: 

 
− −

=
ABL

Aa 0

x x
M ( 1)( 1)

L Lθ dx
EI

 
[12] 

Or,  

 

ABL

Aa 20
3

0 2

x x
M ( 1)( 1)

L Lθ dx
x

E (1 3 )
L

− −

=

+


I

 [13] 

Or, 

 

LAB
Aa 20

30
2

x x
( 1)( 1)M L Lθ dx

xE
(1 3 )

L

− −

=

+


I
 [14] 

 

To facilitate the required integration in the above equation, let’s make a substitution. Let 

=η x/L  where  0 η 1. Hence, Equation [14] becomes: 

 1AB
Aa 2 30

0

M (η 1)(η 1)
θ dx

E (1 3η )

− −
=

+
I

 [15] 

 

And since =x ηL , then =dx L dη . Or,  
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 1AB
Aa 2 30

0

M (η 1)(η 1)
θ L dη

E (1 3η )

− −
=

+
I

 [16] 

 

The above integral expression evaluates to 0.21025. Therefore,  

 

=
AB

Aa

0

M L
θ 0.21025

EI
 [17] 

 

Now, let’s turn our attention to Baθ . The virtual work method tells us that this rotation can be 

computed using: 

 
=

L

Ba 0

M(x)m(x)
θ dx

EI
 [18] 

 

Where M(x) is given by Equation [11], and m(x) is the bending moment equation due to a unit 

load placed at B in the direction of Baθ . According to the free-body diagram shown in Figure 6, 

m(x) = x/L. 

 

Figure 6: Tapered beam subjected to a unit counterclockwise moment at B 

 

Therefore, we can expand Equation [18] as follows: 



 
EDUCATIVE TECHNOLOGIES, LLC Lab101.Space P a g e  | 9 

 

LAB
Ba 20

30
2

x x
( 1)( )M L Lθ dx

xE
(1 3 )

L

−

=

+


I
 [19] 

 

Making the same substitution as before ( =η x/L ), we can write: 

 1AB
Ba 2 30

0

M (η 1)(η)
θ L dη

E (1 3η )

−
=

+
I

 [20] 

 

Or, 

 

=−
AB

Ba

0

0.0477
M

25
L

θ
EI

 [21] 

 

We are now finished with the loading case depicted in Figure [4a].  

 

Now, let’s consider the second loading case, the one shown in Figure [4b]. To determine Abθ , 

using the virtual work method, we need to write the moment equation for the beam due to BAM . 

The moment equation due to a unit moment applied at point B, in the direction of BAM , is given 

in Figure 7; it is x/L. Therefore:  

 

BA

x
M(x) M

L
=  [22] 

 

The moment equation due to a virtual unit load placed in the direction of Abθ is shown in Figure 

5. That is, m(x) = x/L – 1. Then, we can write: 

 

BAL

Ab 0

x x
M ( )( 1)

L Lθ dx
EI

−

=  
[23] 

Or, 
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LBA
Ab 20

30
2

x x
( )( 1)M L Lθ dx

xE
(1 3 )

L

−

=

+


I
 [24] 

 

Or, 

 1BA
Ab 2 30

0

M (η)(η 1)
θ L dη

E (1 3η )

−
=

+
I

 [25] 

 

The above equation evaluates to: 

  

 
BA

Ab

0

0.0477θ 2
M

E
5

L
−=

I
 [26] 

 

To determine Bbθ , we use the same M(x) as above, but need to determine m(x), the moment 

equation due to a virtual unit load placed in the direction of the rotation at B. The moment is 

given in Figure 6; it is m(x) = x/L. Consequently, we can write:  

 

BAL

Bb 0

x x
M ( )( )

L Lθ dx
EI

=  
[27] 

Or, 

 

LBA
Bb 20

30
2

x x
( )( )M L Lθ dx

xE
(1 3 )

L

=

+


I
 [28] 

Or, 

 1BA
Bb 2 30

0

M (η)(η)
θ L dη

E (1 3η )
=

+
I

 [29] 

 

Therefore, 
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BA

Bb

0

0.0304 0
M

0
L

θ
E

=
I

 [30] 

   

 

The last loading case to consider is the one shown in Figure [4c]. The moment equation due to 

the applied load can be written based on the free-body diagram drawn in Figure 7. The moment 

equation is: 

 2wL wx
M(x) x

2 2
= −  [31] 

 

 

Figure 7: Tapered beam subjected to a uniformly distributed load 

 

To calculate rotation Acθ , we need m(x), the bending moment equation, due to a unit virtual 

moment placed at A. m(x) = x/L – 1 (see Figure 5 for details). So, the rotation we are after can 

be written as: 

 
2

L L

Ac 20 0
30

2

x
(Lx x )( 1)

M(x)m(x) W Lθ dx dx
xEI 2E

(1 3 )
L

− −

= =

+
 

I
 [32] 
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Substituting η  for x/L , and ηL  for x, we get: 

 2 2 2
1

Ac 2 30
0

(ηL η L )(η 1)W
θ L dη

2E (1 3η )

− −
=

+
I

 [33] 

 

Or, 

 2
13

Ac 2 30
0

(η η )(η 1)W
θ L dη

2E (1 3η )

− −
=

+
I

 [34] 

 

 

The above equation evaluates to: 

 3

Ac

0

0.016
WL

θ 475
E

=−
I

 [35] 

 

Finally, we can determine Bcθ as follows. 

 2
13

Bc 2 30
0

(η η )(η)W
θ L dη

2E (1 3η )

−
=

+
I

 [36] 

 

Or, 

 3

Bc

0

0.0073
WL

θ 875
E

=
I

 [37] 

 

Now, we can write Equations [8] and [9] in expanded form as: 

  

 3
AB BA

A

0 0 0

0.04772
M L M L WL

θ 0 0.21 60 425
E E

5 0. 1 75
E

− −=
I I I

 [38] 
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 3
AB BA

B

0 0 0

0.047725 0.0304θ 00 0. 0
M L M

3
L WL

E E
0 7 875

E
+−= +

I I I
 [39] 

 

Solving Equations [38] and [39] simultaneously for ABM and BAM , we get: 

 
20

AB A B

E
M (7.38955 θ 11.6009θ ) 0.036042wL

L
= + +
I

 [40] 

 
20

BA A B

E
M (11.6009θ 51.10700θ ) 0.18643wL

L
= + −
I

 [41] 

 

These are the revised slope-deflection equations for the tapered beam with a rectangular cross-

section as shown in Figure 8.  

 

Figure 8: A shallow to deep tapered beam 

 

But, what if the beam is deeper at the left end than at the right end? What would be the slope-

deflection equations for the beam shown in Figure 9?  

 

Figure 9: A deep to shallow tapered beam 

 

The difference between the two beams is in function h(x). For the beam in Figure [8], height is 

defined using Equation [4]. For the beam in Figure [9], however, the height function is: 

 2
3

0 2

x x
h(x) h (4 6 3 )

L L
= − +  [42] 
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We can obtain the slope-deflection equations for the beam in Figure [9] either by derivation or 

directly from Equations [40] and [41] by switching the position of the numerical coefficients, as 

done below. 

 
20

AB A B

E
M (51.10700θ 11.6009θ ) 0.18643wL

L
= + +
I

 [43] 

 
20

BA A B

E
M (11.6009θ 7.38955θ ) 0.036042wL

L
= + −
I

 [44] 

 

Having the two sets of slope-deflection equations, we are now ready to analyze the bridge. 

 

Part 2: Bridge Analysis 

Suppose the left span of the bridge is 10 meters long and the right span is 8 meters long. We 

wish to analyze the continuous beam under a uniformly distributed load of 20 kN/m placed on 

the left span only, as shown below. 

  

Figure 10: A two-span tapered beam subjected to a uniformly distributed load  

 

According to the slope-deflection method, we need to write the slope-deflection equations for 

each span. For member AB, we use Equations [40] and [41], yielding: 

  

 
20

AB A B

E
M (7.38955 θ 11.6009θ ) 0.036042(20)(10)

10
= + +
I

 [45] 

 
20

BA A B

E
M (11.6009θ 51.10700θ ) 0.18643(20)(10)

10
= + −
I

 [46] 
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For segment BC, using Equations [43] and [44], we can write: 

 
0

BC B C

E
M (51.10700θ 11.6009θ )

8
= +
I

 [47] 

 
0

CB B C

E
M (11.6009θ 7.38955θ )

8
= +
I

 [48] 

 

 

Figure 11: The joint free-body diagrams for the tapered beam  

 

Then, we write the joint equilibrium equations, per the free-body diagram shown in Figure 11. 

The resulting equations, in simplified form, are: 

 
0

@A A B

E
M (7.38955 θ 11.6009θ ) 72.83 0

10
= + + =
I

 [49] 

 
@B 0 A B CM E (1.16009θ 11.4991θ 1.45011θ ) 372.856 0= + + − = I  [50] 

 
0

@C B C

E
M (11.6009θ 7.38955 θ ) 0

8
= + =
I

 [51] 

 

Solving Equations [49] through [51] for the unknown joint rotations, we get: 

 

 
A 0θ 200.637/E=− I  [52] 

 
B 0θ 65.6671E= I  [53] 

 
C 0θ 103.0897E=− I  [54] 

 

Finally, substituting Equations [52] through [54] in the slope-deflection equations, we get the 

member end moments for AB and BC, as indicated below. 
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Equation [40] gives us: ABM 0= .  From Equation [41], we get: BAM 270 kN.m=− . And, 

Equations [43] and [44], respectively, yield: BCM 270 kN.m=  and CBM 0= .  

Knowing the member-end moments, we can easily determine the member end shear forces using 

the static equilibrium equations, as shown in Figure 12. 

 

Figure 12: Shear force calculation for the tapered beam  

 

Hence, the support reactions for the bridge are as shown in the diagram below. 

 

Figure 13: Support reactions for the tapered beam  

 


