Structural Analysis Lecture Series

SA61: Three-Moment Equation: Part II
Analysis of Continuous Beams with Support Settlement

This document is a written version of video lecture SA61, which can be found online at the web addresses listed below.

Educative Technologies, LLC

http://www.Lab101.Space
https://www.youtube.com/c/drstructure

Structural Analysis - SA61

The three-moment equation for the analysis of continuous beams with support settlement

Prerequisite: Lecture SA60

The three-moment equation is a single algebraic expression that establishes a relationship among the moment values at three consecutive points in a beam. Lecture SA60 covered the use of the three-moment equation for analyzing beams with no support settlements. This lecture expands the previous discussion by introducing support settlements into the equation.

Consider the continuous two-span beam shown below.

Figure 1: A two-span beam
Suppose segments AB and BC are subjected to a counterclockwise rotation caused by support displacements at B and C , as depicted in Figure 2.

Figure 2: A two-span beam with support settlements
The differential vertical displacement in segment AB , denoted by $\Delta_{\mathrm{B} / \mathrm{A}}$, is the difference between the settlements at A and B. Similarly, $\Delta_{\mathrm{C} / \mathrm{B}}$ denotes the differential vertical displacement for segment BC. These differential displacements, which represent the support settlements, can be introduced in the three-moment equation via the slope-deflection formulation.

The generalized form of the slope-deflection equations for segment AB are given below.

$$
\begin{align*}
& \mathrm{M}_{\mathrm{AB}}=\frac{2 \mathrm{EI}_{\mathrm{AB}}}{\mathrm{~L}_{\mathrm{AB}}}\left(2 \theta_{\mathrm{A}}+\theta_{\mathrm{B}}-\frac{3 \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}}\right)+\Omega_{\mathrm{AB}} \tag{1}\\
& \mathrm{M}_{\mathrm{BA}}=\frac{2 \mathrm{EI}_{\mathrm{AB}}}{\mathrm{~L}_{\mathrm{AB}}}\left(\theta_{\mathrm{A}}+2 \theta_{\mathrm{B}}-\frac{3 \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}}\right)-\Omega_{\mathrm{BA}} \tag{2}
\end{align*}
$$

In the above equations, Ω symbolizes fixed-end moments.

For member BC, the slope-deflection equations can be written as follows.

$$
\begin{align*}
& M_{B C}=\frac{2 \mathrm{EI}_{\mathrm{BC}}}{\mathrm{~L}_{\mathrm{BC}}}\left(2 \theta_{\mathrm{B}}+\theta_{\mathrm{C}}-\frac{3 \Delta_{\mathrm{C} / \mathrm{B}}}{\mathrm{~L}_{\mathrm{BC}}}\right)+\Omega_{\mathrm{BC}} \tag{3}\\
& \mathrm{M}_{\mathrm{CB}}=\frac{2 \mathrm{EI}_{\mathrm{BC}}}{\mathrm{~L}_{\mathrm{BC}}}\left(\theta_{\mathrm{B}}+2 \theta_{\mathrm{C}}-\frac{3 \Delta_{\mathrm{C} / \mathrm{B}}}{\mathrm{~L}_{\mathrm{BC}}}\right)-\Omega_{\mathrm{CB}} \tag{4}
\end{align*}
$$

Figure 3 shows two different representations of the member-end moments. In Figure 3a, the moments are shown using the three-moment equation sign convention. Figure $3 b$ shows the moments using the slope-deflection sign convention.

(a)

(b)

Figure 3: Moment representations for the three-moment and slope-deflection formulations Comparing the two sets of moments, we can see that: $M_{A B}=-M_{A}, M_{B A}=M_{B}, M_{B C}=-M_{B}$, and $M_{B C}=M_{C}$. Therefore, the following joint equilibrium equations hold true.

$$
\begin{align*}
& \mathrm{M}_{\mathrm{AB}}=-\mathrm{M}_{\mathrm{A}} \tag{5}\\
& \mathrm{M}_{\mathrm{BA}}+\mathrm{M}_{\mathrm{BC}}=0 \tag{6}\\
& \mathrm{M}_{\mathrm{CB}}=\mathrm{M}_{\mathrm{C}} \tag{7}
\end{align*}
$$

By substituting the slope-deflection equations in Equations [5], [6], and [7], the following equations result:

$$
\begin{align*}
& \mathrm{M}_{\mathrm{A}}+\frac{2 \mathrm{EI}_{\mathrm{AB}}}{\mathrm{~L}_{\mathrm{AB}}}\left(2 \theta_{\mathrm{A}}+\theta_{\mathrm{B}}-\frac{3 \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}}\right)+\Omega_{\mathrm{AB}}=0 \tag{8}\\
& \frac{2 \mathrm{EI}_{\mathrm{AB}}}{\mathrm{~L}_{\mathrm{AB}}}\left(\theta_{\mathrm{A}}+2 \theta_{\mathrm{B}}-\frac{3 \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}}\right)+\frac{2 \mathrm{EI}_{\mathrm{BC}}}{\mathrm{~L}_{\mathrm{BC}}}\left(\theta_{\mathrm{C}}+2 \theta_{\mathrm{B}}-\frac{3 \Delta_{\mathrm{C} / \mathrm{B}}}{\mathrm{~L}_{\mathrm{BC}}}\right)+\Omega_{\mathrm{BC}}-\Omega_{\mathrm{BA}}=0 \tag{9}
\end{align*}
$$

$$
\begin{equation*}
-\mathrm{M}_{\mathrm{C}}+\frac{2 \mathrm{EI}_{\mathrm{BC}}}{\mathrm{~L}_{\mathrm{BC}}}\left(2 \theta_{\mathrm{C}}+\theta_{\mathrm{B}}-\frac{3 \Delta_{\mathrm{CB}}}{\mathrm{~L}_{\mathrm{BC}}}\right)-\Omega_{\mathrm{CB}}=0 \tag{10}
\end{equation*}
$$

We can determine the slopes at A, B, and $\mathrm{C}\left(\theta_{\mathrm{A}}, \theta_{\mathrm{B}}\right.$, and $\left.\theta_{\mathrm{C}}\right)$ by solving Equations [8], [9], and [10] simultaneously. The resulting algebraic expressions for the three slopes are given below.

$$
\begin{align*}
\theta_{\mathrm{A}}= & \frac{3 \mathrm{I}_{\mathrm{BC}} \Delta_{\mathrm{B} / \mathrm{A}}}{2\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}-\frac{\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}^{2}\left(\Omega_{\mathrm{AB}}+\mathrm{M}_{\mathrm{A}}\right)}{4 \mathrm{EI}_{\mathrm{AB}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}-\frac{\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}} \Delta_{\mathrm{C} / \mathrm{B}}}{2 \mathrm{~L}_{\mathrm{BC}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}- \tag{8}\\
& \frac{\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}} \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}-\frac{\mathrm{L}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\left(4 \Omega_{\mathrm{AB}}+2 \Omega_{\mathrm{BA}}-2 \Omega_{\mathrm{BC}}-\Omega_{\mathrm{CB}}+4 \mathrm{M}_{\mathrm{A}}-\mathrm{M}_{\mathrm{C}}\right)}{12 \mathrm{E}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)} \\
\theta_{\mathrm{B}}= & \frac{\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}^{2} \Delta_{\mathrm{C} / \mathrm{B}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}^{2} \Delta_{\mathrm{B} / \mathrm{A}}\right)}{\mathrm{L}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}+\frac{\mathrm{L}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\left(\Omega_{\mathrm{AB}}-\Omega_{\mathrm{CB}}+\Omega_{\mathrm{BA}}-\Omega_{\mathrm{BC}}+\mathrm{M}_{\mathrm{A}}-\mathrm{M}_{\mathrm{C}}\right)}{6 \mathrm{E}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)} \tag{9}\\
\theta_{\mathrm{C}}= & \frac{3 \mathrm{I}_{\mathrm{AB}} \Delta_{\mathrm{C} / \mathrm{B}}}{2\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}+\frac{\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}} \Delta_{\mathrm{C} / \mathrm{B}}}{\mathrm{~L}_{\mathrm{BC}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}-\frac{\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}} \Delta_{\mathrm{B} / \mathrm{A}}}{2 \mathrm{~L}_{\mathrm{AB}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}- \\
& \frac{\mathrm{L}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\left(\Omega_{\mathrm{AB}}+2 \Omega_{\mathrm{BA}}+2 \Omega_{\mathrm{BC}}+4 \Omega_{\mathrm{CB}}+4 \mathrm{M}_{\mathrm{C}}-\mathrm{M}_{\mathrm{A}}\right)}{12 \mathrm{E}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}+\frac{\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}^{2}\left(\Omega_{\mathrm{CB}}+\mathrm{M}_{\mathrm{C}}\right)}{4 \mathrm{EI}_{\mathrm{BC}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)} \tag{10}
\end{align*}
$$

Substituting Equations [8] through [10] in Equation [2] results in Equation [11].

$$
\begin{align*}
\mathrm{M}_{\mathrm{BA}}= & \frac{6 \mathrm{EI}_{\mathrm{AB}} \mathrm{I}_{\mathrm{BC}}\left(\Delta_{\mathrm{C} / \mathrm{B}} \mathrm{~L}_{\mathrm{AB}}-\Delta_{\mathrm{B} / \mathrm{A}} \mathrm{~L}_{\mathrm{BC}}\right)}{2 \mathrm{~L}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}- \\
& \frac{\mathrm{L}_{\mathrm{AB}} \mathrm{I}_{\mathrm{BC}}\left(\Omega_{\mathrm{AB}}+2 \Omega_{\mathrm{BA}}+\mathrm{M}_{\mathrm{A}}\right)+\mathrm{L}_{\mathrm{BC}} \mathrm{I}_{\mathrm{AB}}\left(2 \Omega_{\mathrm{BC}}+\Omega_{\mathrm{CB}}+\mathrm{M}_{\mathrm{C}}\right)}{2\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)} \tag{11}
\end{align*}
$$

And since $M_{B A}=M_{B}$ (see Figure 3), Equation [11] can be rewritten in the following form.

$$
\begin{align*}
\mathrm{M}_{\mathrm{B}}= & \frac{6 \mathrm{EI}_{\mathrm{AB}} \mathrm{I}_{\mathrm{BC}}\left(\Delta_{\mathrm{C} / \mathrm{B}} \mathrm{~L}_{\mathrm{AB}}-\Delta_{\mathrm{B} / \mathrm{A}} \mathrm{~L}_{\mathrm{BC}}\right)}{2 \mathrm{~L}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)}- \\
& \frac{\mathrm{L}_{\mathrm{AB}} \mathrm{I}_{\mathrm{BC}}\left(\Omega_{\mathrm{AB}}+2 \Omega_{\mathrm{BA}}+\mathrm{M}_{\mathrm{A}}\right)+\mathrm{L}_{\mathrm{BC}} \mathrm{I}_{\mathrm{AB}}\left(2 \Omega_{\mathrm{BC}}+\Omega_{\mathrm{CB}}+\mathrm{M}_{\mathrm{C}}\right)}{2\left(\mathrm{I}_{\mathrm{BC}} \mathrm{~L}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{AB}} \mathrm{~L}_{\mathrm{BC}}\right)} \tag{12}
\end{align*}
$$

By rearranging the terms of the above equation, we can obtain the generalized form of the threemoment equation, as shown in Equation [13].

$$
\begin{align*}
\frac{\mathrm{L}_{\mathrm{AB}}}{\mathrm{I}_{\mathrm{AB}}} \mathrm{M}_{\mathrm{A}}+2\left(\frac{\mathrm{~L}_{\mathrm{AB}}}{\mathrm{I}_{\mathrm{AB}}}+\frac{\mathrm{L}_{\mathrm{BC}}}{\mathrm{I}_{\mathrm{BC}}}\right) \mathrm{M}_{\mathrm{B}}+\frac{\mathrm{L}_{\mathrm{BC}}}{\mathrm{I}_{\mathrm{BC}}} \mathrm{M}_{\mathrm{C}}= & \frac{6 \mathrm{E} \Delta_{\mathrm{C} / \mathrm{B}}}{\mathrm{~L}_{\mathrm{BC}}}-\frac{6 \mathrm{E} \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}}-\frac{\mathrm{L}_{\mathrm{AB}}}{\mathrm{I}_{\mathrm{AB}}}\left(\Omega_{\mathrm{AB}}+2 \Omega_{\mathrm{BA}}\right)- \tag{13}\\
& \frac{\mathrm{L}_{\mathrm{BC}}}{\mathrm{I}_{\mathrm{BC}}}\left(2 \Omega_{\mathrm{BC}}+\Omega_{\mathrm{CB}}\right)
\end{align*}
$$

Let's see how Equation [13] can be used to analyze continuous beams with support reactions.
Example 1: Consider the beam shown below. Suppose the support at B has settled 10 mm . We wish to calculate the support reactions due to the settlement without considering the applied loads. The beam has a constant EI in which E is 200 GPa , and $\mathrm{I}=0.0001 \mathrm{~m}^{4}$.

Figure 4: A two-span continuous beam
We start by drawing the internal moments at the supports, as shown below.

Figure 5: Internal bending moments in a two-span beam
In this case, since there is a pin at A and a roller at $C, M_{A}=M_{C}=0$. Furthermore, since we are not considering the effect of the applied loads on the support reaction forces, all the fixed-end moment terms in Equation [13] are assumed to be zero. Therefore, the three-moment equation can be written in the simplified form shown below.

$$
\begin{equation*}
2\left(\frac{\mathrm{~L}_{\mathrm{AB}}}{\mathrm{I}_{\mathrm{AB}}}+\frac{\mathrm{L}_{\mathrm{BC}}}{\mathrm{I}_{\mathrm{BC}}}\right) \mathrm{M}_{\mathrm{B}}=\frac{6 \mathrm{E} \Delta_{\mathrm{C} / \mathrm{B}}}{\mathrm{~L}_{\mathrm{BC}}}-\frac{6 \mathrm{E} \Delta_{\mathrm{B} / \mathrm{A}}}{\mathrm{~L}_{\mathrm{AB}}} \tag{14}
\end{equation*}
$$

To determine $\Delta_{\mathrm{A} / \mathrm{B}}$ and $\Delta_{\mathrm{C} / \mathrm{B}}$, we need to examine each beam segment separately. Segment AB rotates clockwise as a result of the settlement at support B (see Figure 6). And since clockwise is considered negative direction for rotation according to the slope-deflection sign convention, $\Delta_{\mathrm{B} / \mathrm{A}}$ is negative. That is, $\Delta_{\mathrm{B} / \mathrm{A}}=-10 \mathrm{~mm}=-0.01 \mathrm{~m}$.

Figure 6: Segment rotations in a two-span beam due to a support settlement

And since segment BC rotates counterclockwise due to the settlement at $\mathrm{B}, \Delta_{\mathrm{C} / \mathrm{B}}$ is considered positive. Hence, $\Delta_{C / B}=0.01 \mathrm{~m}$. Consequently, Equation [14] can be expanded as follows.

$$
\begin{equation*}
2\left(\frac{10}{0.0001}+\frac{10}{0.0001}\right) \mathrm{M}_{\mathrm{B}}=\frac{6\left(200 \times 10^{9}\right)(0.01)}{10}-\frac{6\left(200 \times 10^{9}\right)(-0.01)}{10} \tag{15}
\end{equation*}
$$

Solving Equation [15] for M_{B}, we get: $M_{B}=6000$ N.m, or $M_{B}=6 \mathrm{kN} . \mathrm{m}$.
Figure 7 shows the resulting free-body diagrams for Segments AB and BC .

Figure 7: Internal bending moments in a two-span beam

The above diagrams can be used to calculate the member-end shear forces. This is done by writing and solving the static equilibrium equations for each segment. For segment AB , the equations can be written in the following manner.

$$
\begin{align*}
& 6-10 V_{B A}=0 \tag{16}\\
& V_{A B}-V_{B A}=0 \tag{17}
\end{align*}
$$

Solving the above equations for the two shear forces, we get: $\mathrm{V}_{\mathrm{BA}}=0.6 \mathrm{kN}$ and $\mathrm{V}_{\mathrm{AB}}=0.6 \mathrm{kN}$. Similarly, the equilibrium equations for segment BC are as follows.

$$
\begin{gather*}
6-10 V_{B C}=0 \tag{18}\\
V_{C B}-V_{B C}=0 \tag{19}
\end{gather*}
$$

Equations [18] and [19] yield: $\mathrm{V}_{\mathrm{BC}}=0.6 \mathrm{kN}$ and $\mathrm{V}_{\mathrm{CB}}=0.6 \mathrm{kN}$.
The reaction force at A equals $V_{A B}$. At B, the reaction force is the sum of $V_{B A}$ and $V_{B C}$. And at C, the reaction equals $V_{C B}$. The following diagram shows the support reactions due to the settlement at B.

Figure 8: Support reaction due to a support settlement in a two-span beam

Example 2: Consider the beam shown below. It rests on a fixed support at A and on rollers at B and C. Suppose the support at B has a downward settlement of 10 mm , and the support at C has settled 4 mm . We wish to calculate the support reactions due to the applied load and the settlements. The beam has a constant EI in which E is 200 GPa and $\mathrm{I}=0.0001 \mathrm{~m}^{4}$.

Figure 9: A continuous beam with a fixed support

To use the three-moment equation, we need to replace the fixed support at A with a fictitious infinitely rigid beam segment (see Figure 10).

Figure 9: A continuous beam with a fictitious infinitely rigid beam segment
Now we can write two three-moment equations: one equation for the left two segments and another equation for the right two segments.

For the left two segments, Equation [13] can be written as shown below.

$$
\begin{gather*}
\frac{L_{A_{0} A}}{I_{A_{0} A}} M_{A_{0}}+2\left(\frac{L_{A_{0} A}}{I_{A_{0} A}}+\frac{L_{A B}}{I_{A B}}\right) M_{A}+\frac{L_{A B}}{I_{A B}} M_{B}=\frac{6 E \Delta_{B / A}}{L_{A B}}-\frac{6 E \Delta_{A / A_{0}}}{L_{A_{0} A}}-\frac{L_{A_{0} A}}{I_{A_{0} A}}\left(\Omega_{A_{0} A}+2 \Omega_{A A_{0}}\right)- \tag{20}\\
\frac{L_{A B}}{I_{A B}}\left(2 \Omega_{A B}+\Omega_{B A}\right)
\end{gather*}
$$

Since $\mathrm{M}_{\mathrm{A}_{0}}=0, \mathrm{I}_{\mathrm{A}_{0} \mathrm{~A}}=\infty$, and fixed-end moments $\Omega_{\mathrm{A}_{0} \mathrm{~A}}, \Omega_{\mathrm{AA}_{0}}, \Omega_{\mathrm{AB}}$ and Ω_{BA} are zero, the above equation simplifies to Equation [21].

$$
\begin{equation*}
2\left(\frac{L_{A B}}{I_{A B}}\right) M_{A}+\frac{L_{A B}}{I_{A B}} M_{B}=\frac{6 E \Delta_{B / A}}{L_{A B}}-\frac{6 E \Delta_{A / A_{0}}}{L_{A_{0} A}} \tag{21}
\end{equation*}
$$

Assuming that $\delta_{\mathrm{A}_{0}}, \delta_{\mathrm{A}}$, and δ_{B} are vertical settlements at supports $\mathrm{A}_{0}, \mathrm{~A}$, and B respectively, we can determine $\Delta_{\mathrm{A} / \mathrm{A}_{0}}$ and $\Delta_{\mathrm{B} / \mathrm{A}}$ using the following equations.

$$
\begin{gather*}
\Delta_{\mathrm{A} / \mathrm{A}_{0}}=\delta_{\mathrm{A}}-\delta_{\mathrm{A}_{0}}=0-0=0 \tag{22}\\
\Delta_{\mathrm{B} / \mathrm{A}}=\delta_{\mathrm{A}}-\delta_{\mathrm{B}}=(-0.01)-0=-0.01 \tag{23}
\end{gather*}
$$

By substituting the values for $\Delta_{\mathrm{A} / \mathrm{A}_{0}}, \Delta_{\mathrm{B} / \mathrm{A}}, \mathrm{I}_{\mathrm{AB}}, \mathrm{L}_{\mathrm{AB}}$, and E in Equation [21], the following equation results.

$$
\begin{equation*}
2\left(\frac{4}{0.0001}\right) \mathrm{M}_{\mathrm{A}}+\frac{4}{0.0001} \mathrm{M}_{\mathrm{B}}=\frac{6\left(200 \times 10^{6}\right)(-0.01)}{4} \tag{24}
\end{equation*}
$$

In its simplified form, Equation [24] turns into Equation [25], which is one of the two equations we need to solve the problem.

$$
\begin{equation*}
2 \mathrm{M}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}}=-75 \tag{25}
\end{equation*}
$$

The three-moment equation for the two right segments is shown below.

$$
\begin{align*}
\frac{L_{A B}}{I_{A B}} M_{A}+2\left(\frac{L_{A B}}{I_{A B}}+\frac{L_{B C}}{I_{B C}}\right) M_{B}+\frac{L_{B C}}{I_{B C}} M_{C}= & \frac{6 E \Delta_{C B}}{L_{B C}}-\frac{6 E \Delta_{B / A}}{L_{A B}}-\frac{L_{A B}}{I_{A B}}\left(\Omega_{A B}+2 \Omega_{B A}\right)- \\
& \frac{L_{B C}}{\mathrm{I}_{\mathrm{BC}}}\left(2 \Omega_{B C}+\Omega_{C B}\right) \tag{26}
\end{align*}
$$

Since segment BC is subjected to a distributed load, the fixed-end moments for the segment are not zero; instead, they are: $\Omega_{\mathrm{BC}}=\Omega_{\mathrm{CB}}=(3)\left(6^{2}\right) / 12=9 \mathrm{kN} . \mathrm{m}$. However, the fixed-end moments for segment AB are zero, as the segment is not subjected to any loads. Therefore, we can write: $\Omega_{\mathrm{AB}}=\Omega_{\mathrm{BA}}=0$.

Furthermore, $\Delta_{\mathrm{B} / \mathrm{A}}$ and $\Delta_{\mathrm{C} / \mathrm{B}}$ can be calculated as shown below.

$$
\begin{gather*}
\Delta_{\mathrm{B} / \mathrm{A}}=\delta_{\mathrm{B}}-\delta_{\mathrm{A}}=(-0.01)-0=-0.01 \tag{27}\\
\Delta_{\mathrm{C} / \mathrm{B}}=\delta_{\mathrm{C}}-\delta_{\mathrm{B}}=(-0.004)-(-0.01)=0.006 \tag{28}
\end{gather*}
$$

After making the necessary substitutions in Equation [26], the following equation results.

$$
\begin{equation*}
\frac{4}{0.0001} \mathrm{M}_{\mathrm{A}}+2\left(\frac{4}{0.0001}+\frac{6}{0.0001}\right) \mathrm{M}_{\mathrm{B}}=6\left(200 \times 10^{6}\right)\left(\frac{0.006}{6}+\frac{0.01}{4}\right)-\frac{6}{0.0001}(2 \times 9+9) \tag{29}
\end{equation*}
$$

Which can be simplified to:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{A}}+5 \mathrm{M}_{\mathrm{B}}=64.5 \tag{30}
\end{equation*}
$$

By solving Equations [25] and [30] simultaneously, we can determine M_{A} and M_{B} as follows: $\mathrm{M}_{\mathrm{A}}=-44.83 \mathrm{kN} . \mathrm{m}$ and $\mathrm{M}_{\mathrm{B}}=22.67 \mathrm{kN} . \mathrm{m}$. Now the resulting free-body diagrams for the two beam segments can be drawn as shown below.

Figure 10: Internal bending moments in a continuous beam with a fixed end
Using the static equilibrium equations, we can determine the member-end shear forces and the support reactions for the beam. Figure 11 shows the resulting reaction forces for the beam.

Figure 11: Support reactions for a continuous beam with a fixed end

