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Structural Analysis – SA62 
Cables – Introduction 

The Golden Gate Bridge is an iconic structure that utilizes cables to carry loads (see Figure 1). Such 
cables are routinely used in bridges and other types of structures for load transfer. This lecture series 
provides an introduction to the analysis of cables. 

 

Figure 1: The Golden Gate Bridge 

As shown in the figure above, the Golden Gate Bridge is a suspension bridge. Its deck is suspended from 
a pair of main cables using a series of vertical hangers. This arrangement allows most of the bridge load 
to be transferred to the main cables, which in turn transfer the load to the towers located at the ends of the 
bridge. In a scenario like this, given the close proximity of the hangers, we can assume that the main 
cables are subjected to a distributed load. Furthermore, since the weight of each cable is insignificant 
compared to the load it must carry, we can neglect the cable’s own weight when we analyze the system. A 
line drawing illustrating one of the bridge’s main cables is shown in Figure 2. 

 

Figure 2: A line drawing characterization of a main cable in a suspension bridge 

Let’s now consider the pedestrian bridge shown in Figure 3. Note how the surface of the bridge deck 
follows the geometric shape of the cable. In this case, we can conceptualize the entire system as a cable 
hanging freely from its ends, carrying its own weight.  
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Figure 3: Charles Kuonen pedestrian bridge and its line drawing characterization 

The behavior of the cable shown above is similar to the behavior of a power line hanging from two 
supporting transmission towers (see Figure 4). 

  
 

Figure 4: A power line and its line drawing characterization as a cable hanging freely under its own 
weight 

Before we go further, we should make a distinction between a weightless cable supporting a linear load 
and a cable carrying only its own weight. The two cables we just described differ in their shapes: when a 
cable carries a linear load distributed along the horizontal axis (e.g. the main cables in the Golden Gate 
Bridge), its shape can be defined using a parabola. On the other hand, when a cable hangs freely under its 
own weight (e.g. the Charles Kuonen pedestrian bridge), it takes the shape of a catenary.   

Let’s examine this difference more closely. Consider the cable shown in Figure 5. It is suspended from its 
two ends, creating a configuration resembling that of the Golden Gate Bridge. For this cable, we are 
assuming that the bridge deck is exerting a uniformly distributed load of w on the cable along the x-axis. 

 

Figure 5: A cable subjected to a uniformly distributed load 

If we place the origin of the coordinate system at the lowest point of the cable, we can draw the free-body 
diagram of the segment just to the right of the origin. This free-body diagram is shown in Figure 6. 
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Figure 6: The free-body diagram of a segment of a cable subjected to a uniformly distributed load 

In the above diagram, 0T  is the tension force in the cable at its lowest point, T is the tension force at the 
right end of the segment, andα denotes the angle that the cable makes with the horizontal axis at its right 
end.  

Since the segment has to remain in equilibrium, the sum of the forces in the horizontal and vertical 
directions must be zero. Therefore, we can write two equilibrium equations, as shown below. 

 
00 cos= ⇒ =∑ xF T Tα  [1] 

 0 sin= ⇒ =∑ yF T w xα  [2] 
 

Dividing Equation [2] by Equation [1], we get the following: 

 

0 0

sin tan
cos

= ⇒ =
T w x w x
T T T

α α
α

 [3] 

 

Since tanα can be expressed as the change in y with respect to the change in x (i.e., /dy dx ), Equation 
[3] can be rewritten as follows: 

 

0

=
dy w x
dx T

 [4] 

 

This first order differential equation can be easily solved for y. Let’s rewrite Equation [4] as shown 
below. 

 

0

=
wdy x dx
T

 [5] 

 

Applying the integral operator to both sides of Equation [5], we get the following: 

 2

0 02
= ⇒ = +∫ ∫

w wdy x dx y x C
T T

 [6] 

 

The integration constant (C) in Equation [6] can be determined using a boundary condition. In this case, 
we know that at the origin, where x = 0, y is also zero. Substituting zero for x and y in the above 
equation, we can determine C. 
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 2 2

0 0

0 (0) 0
2 2

= + ⇒ = + ⇒ =
w wy x C C C
T T

 [7] 

 

Therefore, Equation [6] can be written as follows: 

 2

02
=

wy x
T

 [8] 

 

Equation [8] is a parabolic function that describes the shape of the cable shown in Figure 5.  

Now let's examine the case in which the cable hangs freely under its own weight. Consider the cable 
shown in Figure 7. 

Figure 7: A cable hanging freely from its ends and subjected to its own weight 

Note that the weight of the cable is not distributed along the x-axis but rather along the arc length of the 
cable. Let’s place our origin at the lowest point of the cable just like we did before. The free-body 
diagram for the segment of the cable to the right of the origin is shown in Figure 8. 

Figure 8: The free-body diagram of a cable subjected to its own weight 

Note that the arc length of the segment in the figure above is denoted by s. We can write two equilibrium 
equations for the free-body diagram shown in Figure 8 as follows. 

 
00 cos= ⇒ =∑ xF T Tα  [9] 

 0 sin= ⇒ =∑ yF T w sα  [10] 
 

Dividing Equation [10] by Equation [9], we obtain Equation [11]. 

 

0 0 0

sin tan
cos

= ⇒ = ⇒ =
T w s w dy ws s
T T T dx T

α α
α

 [11] 

 

In order to solve the above differential equation, we need to replace s with x and y. We can do this using 
the Pythagorean theorem. Note that ds can be viewed as the hypotenuse of a right triangle with height dy 
and base dx. Therefore, we can write the following: 
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 2 2 2 2 2= + ⇒ = +ds dx dy ds dx dy  [12] 
 

If we take the derivative of both sides of Equation [11] with respect to x, we get the following equation. 

 2

2
0 0

( ) ( )= ⇒ =
d dy d w d y w dss
dx dx dx T d x T dx

 [13] 

 

Substituting Equation [12] into Equation [13], we get the following second-order differential equation. 

 2 22
2

2
0 0

1 ( )
+

= = +
dx dyd y w w dy

d x T dx T dx
 [14] 

 

When solved, the above equation yields the following solution. 

 0 0

0

cosh( )= −
T Twy x
w T w

 [15] 

 

The above equation is that of a catenary. It is used to describe the shape of a cable hanging freely under 
its own weight. 

To summarize, when analyzing cable systems subjected to distributed loads, depending on the source and 
nature of the loads, we may have to use a different mathematical function to describe the shape of each 
cable. This lecture series deals with the analysis of such cable systems. 

Let’s start with a simple example. Consider a weightless cable spanning a distance of 10 meters between 
two poles. Attached to the cable are two traffic lights. The traffic lights cause the cable to settle, forming 
three straight segments (see Figure 9). Each traffic light weighs 400 Newtons. 

 

Figure 9: Two equidistant traffic lights hanging from a cable between two poles 



 
EDUCATIVE TECHNOLOGIES, LLC Lab101.Space P a g e  | 7 

 
The two lights divide the span of the road into three equal distances. Due to the symmetrical placement of 
the lights and the position of the cable, we know that points B and C displace downward the same 
amount. When measured, the vertical distance from the top of each pole to points B and C is 0.6 meter. 

We want to determine the tension force in each segment of the cable. 

Figure 10: Free-body diagram for a cable system under symmetrical loading 

The solution for this problem is rather straightforward. Let’s start by drawing the free-body diagram of 
the cable. As depicted in Figure 10, there are two support reactions at each end of the cable. Therefore, 
the three static equilibrium equations can be written as follows: 

 0 0= ⇒ − =∑ x x xF D A  [16] 
 0 400 400 0= ⇒ + − − =∑ y y yF A D  [17] 
 @ 0 10 400(3.33) 400(6.66) 0= ⇒ − − =∑ yM A D  [18] 

 

Using Equations [17] and [18], we can solve for the vertical support reactions (i.e. yA and yD ). However, 

the horizontal reactions (i.e. xA and xD ) cannot be determined from Equation [16] since it has too many 
unknowns.  

For this problem, however, we can determine the unknown forces without resorting to Equations [16] 
through [18]. Let’s cut the cable in segment BC and draw the free-body diagram for the left side of the 
cable system as shown in Figure 11.  

 
Figure 11: Free-body diagram for left side of cable system 

Since only three unknown forces appear on this free-body diagram, we can calculate them using the static 
equilibrium equations. If we sum the moments about point A, we get the following:  

 @ 0 0.6 400(3.33) 0= ⇒ − =∑ BCM A T  [19] 
 
If we solve the above equation for BCT , we find that the tension in segment BC is 2220=BCT N . 



 
EDUCATIVE TECHNOLOGIES, LLC Lab101.Space P a g e  | 8 

Now, we can write the other two equilibrium equations as follows: 

 0 2220 0= ⇒ − =∑ x xF A  [20] 
 0 400 0= ⇒ − =∑ y yF A  [21] 

 

Equations [20] and [21] yield: 2220=xA N and 400 .=yA N  

To determine the tension force in segment AB, let’s draw the free-body diagram for point A (see Figure 
12). 

 

Figure 12: Free-body diagram for point A 

Since the sum of the forces at point A must be zero, the algebraic sum of the reaction forces must be equal 
to the tension force in the cable. Therefore, we can write the following equation: 

 2 2 20 2220 400= ⇒ = +∑ x ABF T  [22] 
 

We find that the tension force in segment AB is 2255.75=ABT N . 

Because the cable system is symmetrical (see Figure 9), we know that the tension force in segment CD is 
equal to the tension force in segment AB. Therefore, we know that the tension force in segment CD is 
equal to 2255.75=CDT N . 

Figure 13 shows the results of the analysis and the tension force in each segment of cable. 

 
Figure 13: Results of analysis of tension in cables with two equidistant lights 
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To reinforce the process of analyzing cables subjected to concentrated loads, let’s consider a related 
example. Suppose the right traffic light is positioned 1.8 meters from the right pole, which makes the 
loading on the cable unsymmetrical (see Figure 14).  

 

 

 

 

 

 

 

 

 

Figure 14: Cables bearing an unsymmetrical load  

What are the tension forces in the cable?  

We start by drawing the free-body diagram of the entire system (see Figure 15). 

Figure 15: Free-body diagram of cables with unsymmetrical loading 

Although we cannot determine all four support reactions, we can calculate the vertical reactions at A and D 
using two equilibrium equations.  

By summing the moments about point A, we can determine yD , as shown below.  

 @ 0 10 400(8.2) 400(4.1) 0 492= ⇒ − − = ⇒ =∑ y yM A D D N  [23] 
 
Furthermore, by summing the forces in the y-direction, we can calculate yA  as shown in Equation [24]. 

 0 400 400 0 308= ⇒ + − − = ⇒ =∑ y y y yF A D A N  [24] 
 

To determine the tension force in segment BC, similarly to the previous example, we can draw the free-
body diagram for the left segment of the system as depicted in Figure 16. 
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Figure 16: Free-body diagram for the left segment of the system of cables with unsymmetrical loading 

The above diagram embodies four unknowns. There are two unknown forces ( xA and BCT ), one unknown 

angle (α ), and one unknown distance ( 1h ). To solve the problem, we need to know one of these 
unknowns. Let’s assume that the vertical distance from point A to point B is 0.45 meters. That is, 

1 0.45 .=h m  

Now, if we sum the moments about point B, we can determine xA as shown in Equation [25]. 

 @ 0 0.45 308(4.1) 0 2806= ⇒ − = ⇒ =∑ x xM B A A N  [25] 
 

Then, summing the forces in the x and y directions, we can determine the x- and y-components of BCT  as 
follows: 

 cos 2806 0 cos 2806= − = ⇒ =∑ x BC BCF T T Nα α  [26] 
 sin 308 400 0 sin 92= + − = ⇒ =∑ y BC BCF T T Nα α  [27] 

  

Knowing the x- and y-components of BCT , we can determine the tension in segment BC (see Equation 
[28]). 

 2 2 2 2 2( cos ) ( sin ) 2806 92 2807= + = + ⇒ =BC BC BC BCT T T T Nα α  [28] 
 

Similarly to the previous example, to determine the tension force in segment AB, we can use the free-
body diagram of point A (see Figure 17). 

Figure 17: Free-body diagram of point A 

The sum of the support reactions at A must be equal to ABT . Knowing this fact, we can write the 
following: 
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 2 2 2308 2806 2823= + ⇒ =AB ABT T N  [29] 
 

To determine the tension force in segment CD, let’s draw the free-body diagram for point D. 

Figure 18: Free-body diagram for point D 

 
Since the sum of the forces at D must be zero, we can write the following: 

 2 2 2492 2806 2849= + ⇒ =CD CDT T N  [30] 
 

The results of our analysis and the calculated tension forces in the cable are written next to each segment 
in Figure 19. 

 

Figure 19: Results of analysis of cables with unsymmetrical loading  

As we demonstrated in this lecture, when subjected to concentrated loads only, the analysis of cable 
systems involves applying the static equilibrium equations to different segments of the system while 
keeping in mind that no more than three unknowns should be present in any segment. 

We will continue our discussion on cables in the next lecture. For now, see if you can solve the following 
problems.   
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Problem A: Determine heights 1h  and 2h  in the cable system shown below. 

 

Problem B: Given that tension in segment AB is 130 N, determine weight w. 

 


