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SA54: Analysis of a Three-hinged Arch  
Several types of stress could develop in a typical beam when subjected to applied loads. For our 
purposes, we generally represent the state of internal stress in beams using shear force and 
bending moment, as shown in Figure 1. 

 

 
Figure 1: Internal forces in beams 

 

In the context of structural design, there is a direct relationship between the magnitude of these 
forces and the size and the depth of the beam. The larger the force, especially the bending 
moment, the deeper the cross-section of the beam needs to be in order to carry the load safely. 

For beams with a relatively long span, the bending moment could become excessively large, 
which would require the use of an even deeper cross-section.  In situations such as these it may 
be desirable to curve the beam to form an arch. This configuration results in a significant 
reduction in bending moment, but at the expense of compressing the member (see Figure 2).  
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Figure 2: A beam and its comparable arch 

 

As depicted in Figure 3, we can classify arches based on their boundary conditions. An arch 
could be fixed at both ends with no hinges present or we can have an arch with a hinge at its 
crown. You could also have two-hinged and three-hinged arches. The degree of indeterminacy of 
these arches varies from three to zero. With a degree of indeterminacy of zero, the three-hinged 
arch is considered a statically determinate system.  

 

Figure 3: Types of arches 

 
Here, we are going to focus on the analysis of a three-hinged arch. In order to analyze such a 
structure, we need to be able to define its shape using a mathematical function for a 
corresponding shape. We generally use either a circle or a parabola for this purpose.  
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Consider the arch shown in Figure 4. Let’s refer to its height as h  and use L  to refer to the 
horizontal distance between the two supports. 

 

Figure 4: A parabolic arch 

 

Suppose we wish to describe the shape of the arch using a parabolic function. We start with a 
general quadratic equation, like this: 

 2f(x) ax bx c    [1] 

 

Our task is to determine the coefficients a , b  and, c  in terms of h  and L . We know that the arch 
has a height of zero at the left support. So, we can write: 

 f(0) 0 0 0 c 0          
               
    
[2] 

  

This gives us: c 0.=   

We also know that when x L/ 2= , the height of the arch ish . So, we can write: 

 2L L Lf( ) a( ) b( ) h
2 2 2
= + =  [3] 

 

Further, at the right end of the arch wherex L= , our function should evaluate to zero. 

 2f(L) aL bL 0 0= + + =  [4] 

 

Using equations [3] and [4], we can solve for coefficients a  and b  to yield the following: 

 2
4ha
L
−

=  [5] 
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4hb
L

=  [6] 

 

Therefore, the shape of our arch can be described using the following parabolic function: 

 2
4hxf(x) (L x)
L

= −  [7] 

 

Let’s now consider an arch having a height of 10 meters and it spans 50 meters in length. We 
wish to analyze it under a concentrated load of 120 kN placed at its crown, as shown in Figure 5. 

 
Figure 5: A parabolic arch subjected to a concentrated load 

 

Knowing h  and L , we can rewrite f(x)  as: 

 
250x xf(x)

62.5
−

=  [8] 

 

Since the arch rests on a pin at either side, its free-body diagram involves a horizontal force and 
a vertical force at each end, as shown in Figure 6. 
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Figure 6: Free-body diagram of the arch 

 

In this case, the two vertical reactions can be easily determined using the equilibrium equations, 
as shown below. 

 y y yF A B 120 0= + − =∑  [9] 

 
@A yM 50B 25(120) 0= − =∑  [10] 

 
y yA B 60 kN= =  [11] 

 

To determine the horizontal reactions, let’s separate the left and right halves of the arch and draw 
the free-body diagram for each half (see Figure 7). 

 

Figure 7: Free-body diagrams of the left and right arch segments 

 

Since the bending moment at a hinge is zero, we end up with only two unknown forces, xC and yC , 

at each cut point. Also, due to the symmetrical nature of the problem, we have identical forces at 
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the left and right sides of Point C. Now we can determine xA  using the left half of the arch. 

Summing the moments about the cut point, we have the following: 

 @C xM 25(60) 10A 0= − =∑  [12] 

 

We then solve the equation for xA . 

 xA 150 kN=  [13] 

 

We can determine xB in a similar manner, as shown below. 

 @C xM 25(60) 10B 0= − =∑  [14] 

 
xB 150 kN=  [15] 

 

Figure 8 shows the results of the analysis.  

 

 

Figure 8: The arch support reactions 

 

Suppose we are now asked to determine the internal forces in the arch including the axial force, 
the shear force, and the bending moment. 

To find these internal forces, we will cut the arch at some distance x from the origin. The free-
body diagram of the structure’s left segment is shown in Figure 9. Note the horizontal and 
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vertical distances from the origin to the cut point. We have labeled the horizontal distance x , so 
the vertical distance becomes f(x) .  

 

Figure 9: The arch’s internal forces shown in the global coordinate system 

 

The free-body diagram involves the three unknown forces M , H , andR . We can determine M  
by writing the sum of the moments about the cut point as shown in Equation [16]. 

 
2150(50x x )M 60x 0

62.5
−

+ − =  [16] 

 

Solving the equation for M , we get: 

 2M 60x 2.4x= −  [17] 

 

As the above equation suggests, the bending moment in the arch varies as a function of x in a 
nonlinear manner. Furthermore, since the sum of the forces in the x-direction must be zero,H
must be 150 kN and R  must be 60 kN in order for the sum of the forces in the y-direction to be 
zero.  

However, note that H  is NOT the axial force and R  is NOT the shear force in the member. The 
axial force must be in the tangential direction at x , and the shear force must be in the radial 
direction, as shown in Figure 10. 
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Figure 10: Internal forces in the arch in the local coordinate system 
 

If we refer to the angle that the tangent to the curve makes with the horizontal axis asθ , then the 
tangent of the angle can be expressed in terms of the derivative of f(x)with respect to x .  

 
df

tan(θ) 0.8 0.032x
dx

= = −  [18] 

 

Knowing the tangent of an angle, we can determine the angle itself.  We can now express N  and 

V in terms of H , R , and θ as shown in Equations [19] and [20]. 

 N Hcosθ R sinθ= +  [19] 
 V R cosθ H sinθ= −  [20] 

 

Since H  is 150 kN and R is 60 kN, Equations [19] and [20] can be rewritten as the following: 

 N 150 cosθ 60 sinθ= +  [21] 
 V 60 cosθ 150 sinθ= −  [22] 

 

Now, let’s use Equations [17], [21], and [22] to draw the moment, thrust, and shear diagrams, 
respectively. 

To draw the moment diagram, we need to graph Equation [17]. This gives us a diagram for the 
left half of the arch, as shown in Figure 11. Note that since the geometry and the load are 
symmetrical about the centerline of the arch, the diagram for the right half of the structure will be 
identical to that of the left half. 
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Figure 11: Moment diagram for the left half of the arch 

 

Another item to note is that the bending moment at the hinge at either end of the segment is zero. 
We can verify this by evaluating Equation [17] at zero and 25. 

We can also determine the point at which the maximum moment occurs by setting the derivative 
of the moment equation to zero, and then solving for x , as shown in Equation [23]. 

 
dM 60 4.8x 0
dx
= − =  [23] 

 

Solving the above equation for x , we get: x 12.5= meters. 

The equation tells us that the maximum moment occurs 12.5 meters to the right of A. Therefore, 
according to Equation [17], the magnitude of the maximum moment equals 375 kNm as shown 
in Equation [24]. 

 2M(12.5) 60(12.5) 2.4(12.5) 375 kN.m= − =  [24] 
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The complete moment diagram for the arch is given in Figure 12. 

 
Figure 12: Moment diagram for the entire arch 

 

To draw the diagram for the axial force, also called the thrust diagram, we need to graph 
Equation [21]. We have already determined an algebraic expression for tangent θ (see Equation 
[18]). Using the trigonometric properties of an angle, we can then express the sine and cosine of 
the angle in terms of its tangent, as shown in Equations [25] and [26].  

 2 2

1 1cos(θ)
1 tan (θ) 1 (0.8 0.032x)

= ⇒
+ + −

 [25] 

 

2

0.8 0.032xsin(θ) tan(θ)cos(θ)
1 (0.8 0.032x)

−
= ⇒

+ −
 

[26] 

 

Substituting [25] and [26] into Equation [21], we get the following: 

 2

198 1.92xN
1 (0.8 0.032x)

−
=

+ −
 [27] 
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The graph of this equation is depicted in Figure 13.  

 
Figure 13: Thrust diagram for the left half of the arch 

 

To determine the maximum axial force in the segment, we set the derivative of N  to zero, as 
shown in Equation [28]. 

 
dN 0 1875 150x 0
dx
= ⇒ − =  [28] 

 

Solving the above equation for x , we get the following: 

 x 12.5=  [29] 
 

Therefore, the maximum axial force in the arch occurs 12.5 meters from the left support. The 
magnitude of the force is 161.6 kN when evaluated using Equation [27]. 

 2

198 1.92(12.5)N(12.5) 161.6 kN
1 (0.8 0.032(12.5))

−
= =

+ −
 [30] 
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Again, the diagram for the right half of the arch is identical to that of the left half, so the 
complete thrust diagram for the arch can be constructed as shown below in Figure 14. 

 

Figure 14: Thrust diagram for the entire arch 

 

Finally, to draw the shear diagram, we can use Equation [22]. 

Using Equations [25] and [26], we can simplify Equation [22] as follows: 

 2

60 4.8xV
1 (0.8 0.032x)

− +
=

+ −
 [31] 

 

Note the numerator of the equation which tells us that the shear is zero when x 12.5= . The 
graph of the equation is shown in Figure 15.  

 

Figure 15: Shear diagram for the left half of the arch 
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The shear is negative 46.85 kN at the left end of the left side segment of the arch. The shear is 
positive 60 kN at the right end of this particular segment. The complete shear diagram is shown 
in Figure 16. 

 

Figure 16: Shear diagram for the entire arch 

 

Figure 17 shows the moment diagram, thrust diagram, and shear diagram for the entire arch. 

 

Figure 17: Moment, thrust, and shear diagrams for the arch 

 


