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Structural Analysis – SA59 
The Moment-Area Method for Calculating Slope and Deflection in Beams  
 
In this lecture, we are going to discuss the use of the moment-area method for calculating slope 
and deflection in beams. 

Let’s start by considering a cantilever beam subjected to a concentrated moment of 3 kN.m at its 

free end. The length of the beam is 4 meters. 

 

Figure 1: A cantilever beam 
 

Naturally, the beam is going to deflect upward, as shown in Figure 2. 

Figure 2: The deformed shape of a cantilever beam subjected to a concentrated moment 
 

We refer to the deformed line along the neutral axis of the beam as its elastic curve. The slope of 
the curve we denote using θ . For example, the slope at A and B are denoted as Aθ  and Bθ , 

respectively (see Figure 2 above). 

According to the moment-area method, the difference between the two slopes is equal to the area 
under the M/EI diagram between the two points. Expressed mathematically, the theorem can be 
written as follows: 

 
B

B A A

Mθ -θ = dx
EI∫  [1] 

 

Please keep in mind that although we are referring to points A and B here, the theorem works for 
any pair of points on the beam.  

Let us see why this relationship holds true. 
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In Lecture SA22, we showed that for an infinitesimal slice of a beam (see Figure 3), the 
difference between the slopes of the elastic curve at the ends of the slice can be expressed in 
terms of the internal bending moment at that point. More precisely, we can write:  

 
Mdθ= dx
EI

 [2] 

 

Where E is the modulus of elasticity of the material and I is the moment of inertia of the beam 
about the axis of bending. Here we are assuming that the beam has a constant EI. 

 

Figure 3: An infinitesimal deformed beam element  
 

Integrating both side of Equation 2 over a specific interval, say from point i to point j along the 
length of the beam, we get: 

 ∫ ∫
j j

i i

Mdθ= dx
EI

 [3] 

 

The left side of the equation equals: j iθ -θ . The right side of the equation is equal to the area 

under the M/EI diagram between the two points. When we apply the above expression to 
segment AB of our cantilever beam, Equation 3 turns into Equation 1.  

Now that we know the basis for the theorem, let’s use it to calculate the rotation at the free end 
of the beam. The M/EI diagram for the cantilever beam is shown below. 
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Figure 4: The M/EI diagram for a cantilever beam 

 

Therefore, the area under the diagram between A and B is: 4(3/EI)=12/ EI . Consequently, 
Equation 1 can be simplified to read: 

 B Aθ -θ =12/EI  [4] 
 

And since the slope of the elastic curve at the fixed end of the beam is zero, Bθ  can easily be 

determined as follows: 

 =B Bθ -0=θ 12/EI  [5] 
 

Let’s consider another example. Suppose we wish to determine the slope of the elastic curve at 
the midpoint of the cantilever beam. Since we know Aθ , we can write: 

 ∫
2

midpoint A 0

Mθ -θ = dx
EI

 [6] 

 

The area under the M/EI diagram for the beam segment between 0 and 2 is 2(3/ EI)= 6/EI , 
therefore:  

  =midpoint A midpoint midpointθ -θ =θ -0=θ 6/EI  [7] 
 

Now consider a simply supported beam subjected to a concentrated load at its midpoint, as 
shown in Figure 5.  

 
Figure 5: A simply supported beam subjected to a concentrated load 
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Suppose we wish to determine the slopes of the elastic curve at the ends of the beam. The M/EI 
diagram and the elastic curve for the entire beam are shown below.  

Figure 6: The M/EI and elastic curve diagrams for a simply supported beam 
 

If we label the end rotations of the beam Aθ  and Bθ , knowing that the area under the M/EI 

diagram is 18/EI, then according to the theorem we can write: 

 B A
6 1θ -θ =6( )( )=18/EI
EI 2

 [8] 

 

However, neither Aθ nor Bθ can be calculated using the above equation, as we have one equation 

with two unknowns. To be able to use the first moment-area theorem, we need to know one of 
the slopes in order to determine the other one.  

In this case, given the symmetrical nature of the load, we know the slope of the elastic curve at 
point C where deflection reaches its maximum value. That slope is zero, hence: 

 −C A A A
6 1θ -θ =0-θ =θ = 3( )( )=-9/EI
EI 2

 [9] 

 

Knowing Aθ , we can now use Equation 8 to determine Bθ , as follows: 
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 B
9θ -(- )=18/EI
EI

 [10] 

 

Or: 

 Bθ =9/EI  [11] 
 

As we just saw, the first moment-area theorem has limited computational use. The theorem can 
be used to calculate the slope of the elastic curve at a point only if we already know the slope at 
another point. For example, consider the beam shown below.  

Figure 7: The elastic curve for a beam subjected to an asymmetrical loading  
 

Here the load is not at the center of the beam, and the maximum deflection occurs somewhere 
between points C and D. Therefore, since the exact location at which θ  vanishes is not known, 
the first moment-area method cannot be used to determine the end slopes. For that, we need to 
utilize the second moment-area theorem.  

What is this theorem about? In essence, the second moment-area theorem states that the vertical 
distance between the tangent lines at A and B, measured at B, is equal to the moment of the M/EI 
diagram about B.  
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For our statically determinate beam, the M/EI diagram and the tangent lines at A and B are 
shown in Figure 8. 

  Figure 8: Vertical distance between two tangent lines at the right end of a beam 
 

The vertical distance between the two tangent lines at B is denoted as B/AΔ . According to the 

second moment-area theorem, this distance is equal to the moment of the M/EI diagram about 
point B. Or, 
 

 B/A
5.32 1 5.32 1 42.56Δ =(4)( )( )( )+(2)( )( )( )=
EI 2 EI 2 EI

4 22+ 2
3 3

×  [12] 

 

In writing the above expression, the M/EI diagram is viewed as two right triangles, and the 
moment of each about B is computed by multiplying the area by the distance from its center to 
point B. The two distances (moment arms) are shown in blue in the above equation. 

Since beam rotations are assumed to be small, we can write: 

 B/A
A A

Δ
θ tan(θ )=

6


 [13] 

Or 

 A
42.56 7.09θ = =
6EI EI

 [14] 
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Please keep in mind that this is a negative rotation. So, in a strict sense we should write 
θ =-7.09/EIA . Now that we have Aθ , we can use the first moment-area theorem to determine 

Bθ , hence: 

 ∫
6

B A 0

Mθ -θ = dx
EI

 [15] 

 

Since the area under the M/EI diagram is: (5.32/ EI)(6)(1/ 2)=15.96/ EI , it follows that: 

 B Aθ -θ =15.96/EI  [16] 
 

By substituting -7.09/EI for Aθ , we get:  

 B
15.96 7.09 8.87θ = - =

EI EI EI
 [17] 

 

Please note that we can also use the second moment-area theorem to determine Bθ . Let’s see 

how. Consider the diagram shown in Figure 9. The height difference between the two tangent 
lines, measured at A, is labeled A/BΔ . 

Figure 9: Vertical distance between two tangent lines at the left end of a beam 
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This height can be determined by taking the moment of the M/EI diagram about point A, as 
shown below. 

 A/B
5.32 1 5.32 1 53.20Δ =(4)( )( )( )+(2

I
4 22 4+)( )( )( )

23
=

EI 2 E 3I E
×  [18] 

 

And since A/B BΔ =6θ , it follows that: 

 B
53.20 8.87θ = =
6EI EI

 [19] 

 

Now that we know how the second moment-area theorem works, let us see why the theorem 
holds true. Consider an infinitesimal element in our cantilever beam, as depicted in Figure 10.  

Figure 10: An infinitesimal beam element at an arbitrary position in a beam 
 

The element carries an internal bending moment of M which is causing the differential end slope 

dθ . The mathematical relationship between M and dθ is: 

 
Mdθ= dx
EI

 [20] 

 

Without loss of generality, let us assume the element is located at distance x* from the free end 

of the beam. Multiplying both sides of the above equation by x*, we get: 

 
Mx*dθ=x* dx
EI

 [21] 

 

If we integrate both side of the above equation from A to B, we get: 
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B B

A A

Mx*dθ= x* dx
EI∫ ∫  [22] 

 

Figure 11 shows that the left side of Equation 21 equals the vertical distance between the two 
end tangents at distance x* from the element. 

Figure 11: The vertical distance between the end tangent lines of a beam element  
 

When we integrate that distance from A to B, we get the total vertical distance at B between the 
two tangent lines (lines drawn at A and B), as depicted in figure below. 

 

Figure 12: The vertical distance between the tangent lines at two distinct points in a beam 
 

Now that we know the geometric interpretation of the left side of Equation 22, let’s turn our 
attention to the right side of the equation, which represents the first moment of the M/EI diagram 
about point B. Therefore, we can rewrite it as follows:  

 
B

B/A A

MΔ = x dx
EI∫  [23] 

 

Where x  is the distance from the center of the M/EI diagram to point B. The above equation 
represents the second moment-area theorem. Geometrically speaking, it states that the distance 
between the two tangent lines, measured at B, is equal to the area under the M/EI diagram times 
the distance from the center of the diagram to point B. 
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So, for the simply supported beam shown in Figure 7, vertical distance B/AΔ  (as depicted in 

Figure 8) is computed by taking the moment of the area under the M/EI diagram about point B, 
and vertical distance A/BΔ  (see Figure 9) is calculated by taking the moment of the same area 

about point A. 

 

Generally speaking, the second moment-area theorem enables us to determine both slope and 
deflection in beams, whereas the first moment-area theorem can be used for calculating slopes 
only. 

Let us determine the vertical deflection of the cantilever beam given in Figure 1 using this 
method. The M/EI diagram and the elastic curve for the beam are shown in Figure 13. 

Figure 13: The M/EI diagram and the elastic curve for a cantilever beam 
 

The vertical deflection at B, which is the same as B/AΔ , can be computed by taking the moment 

of the area under the M/EI diagram (from A to B) about B. 

 B/A
3 24Δ=Δ =(2)( )(4)=
EI EI

 [24] 
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Now it is your turn. Use the moment-area theorems to solve the following problems. 

 

A) Determine the slope and deflection at the free end of the cantilever beam.  

 
B) Determine the beam’s deflection at B and D, and the slope of the elastic curve at C and 

D. The beam has a constant EI. 


