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Structural Analysis – SA61 
The three-moment equation for the analysis of continuous beams with support settlement 

Prerequisite: Lecture SA60 

The three-moment equation is a single algebraic expression that establishes a relationship among 
the moment values at three consecutive points in a beam. Lecture SA60 covered the use of the 
three-moment equation for analyzing beams with no support settlements. This lecture expands 
the previous discussion by introducing support settlements into the equation. 

Consider the continuous two-span beam shown below.  

 

 

 

Figure 1: A two-span beam 

Suppose segments AB and BC are subjected to a counterclockwise rotation caused by support 
displacements at B and C, as depicted in Figure 2.  

 

 

 

  
  
 

Figure 2: A two-span beam with support settlements 

The differential vertical displacement in segment AB, denoted by B/AΔ  , is the difference 
between the settlements at A and B. Similarly, C/BΔ  denotes the differential vertical 
displacement for segment BC. These differential displacements, which represent the support 
settlements, can be introduced in the three-moment equation via the slope-deflection 
formulation. 

The generalized form of the slope-deflection equations for segment AB are given below. 

 B/AAB
AB A B AB

AB AB

32EIM (2 )
L L

∆
= θ +θ − +Ω  [1] 

 

 B/AAB
BA A B BA

AB AB

32EIM ( 2 )
L L

∆
= θ + θ − −Ω  [2] 

In the above equations, Ω symbolizes fixed-end moments.  
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For member BC, the slope-deflection equations can be written as follows. 

 BC C/B
BC B C BC

BC BC

2EI 3M (2 )
L L

∆
= θ +θ − +Ω  [3] 

 

 BC C/B
CB B C CB

BC BC

2EI 3M ( 2 )
L L

∆
= θ + θ − −Ω  [4] 

 

Figure 3 shows two different representations of the member-end moments. In Figure 3a, the 
moments are shown using the three-moment equation sign convention. Figure 3b shows the 
moments using the slope-deflection sign convention.  

 

 

 

 

 

 

 

 

Figure 3: Moment representations for the three-moment and slope-deflection formulations 

Comparing the two sets of moments, we can see that: AB AM M=− , BA BM M= , BC BM M=− , and 

BC CM M= . Therefore, the following joint equilibrium equations hold true. 

 AB AM M=−  [5] 
 BA BCM M 0+ =  [6] 
 CB CM M=   [7] 

 

By substituting the slope-deflection equations in Equations [5], [6], and [7], the following 
equations result: 

 B/AAB
A A B AB

AB AB

32EIM (2 ) 0
L L

∆
+ θ +θ − +Ω =  [8] 

 B/A BC C/BAB
A B C B BC BA

AB AB BC BC

3 2EI 32EI ( 2 ) ( 2 ) 0
L L L L

∆ ∆
θ + θ − + θ + θ − +Ω −Ω =  [9] 
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 BC C/B
C C B CB

BC BC

2EI 3M (2 ) 0
L L

∆
− + θ +θ − −Ω =  [10] 

 

We can determine the slopes at A, B, and C ( Aθ , Bθ , and Cθ ) by solving Equations [8], [9], and 
[10] simultaneously. The resulting algebraic expressions for the three slopes are given below. 

2
BC B/A BC AB AB A BC AB C/B

A
BC AB AB BC AB BC AB AB BC BC BC AB AB BC

AB BC B/A AB BC AB BA BC CB A C

AB BC AB AB BC BC AB AB BC

3I I L ( M ) I L
2(I L I L ) 4EI (I L I L ) 2L (I L I L )

I L L L (4 2 2 4M M )
L (I L I L ) 12E(I L I L )

∆ Ω + ∆
θ = − − −

+ + +

∆ Ω + Ω − Ω −Ω + −
−

+ +

 [8] 

  
2 2

BC AB C/B AB BC B/A AB BC AB CB BA BC A C
B

BC AB BC AB AB BC BC AB AB BC

(I L I L ) L L ( M M )
L L (I L I L ) 6E(I L I L )

∆ + ∆ Ω −Ω +Ω −Ω + −
θ = +

+ +
 [9] 

  
AB C/B BC AB C/B AB BC B/A

C
BC AB AB BC BC BC AB AB BC AB BC AB AB BC

2
AB BC AB BA BC CB C A AB BC CB C

BC AB AB BC BC BC AB AB BC

3I I L I L
2(I L I L ) L (I L I L ) 2L (I L I L )
L L ( 2 2 4 4M M ) I L ( M )

12E(I L I L ) 4EI (I L I L )

∆ ∆ ∆
θ = + − −

+ + +

Ω + Ω + Ω + Ω + − Ω +
+

+ +

 [10] 

 

Substituting Equations [8] through [10] in Equation [2] results in Equation [11]. 

AB BC C/B AB B/A BC
BA

AB BC BC AB AB BC

AB BC AB BA A BC AB BC CB C

BC AB AB BC

6EI I ( L L )M
2L L (I L I L )

L I ( 2 M ) L I (2 M )
2(I L I L )

∆ −∆
= −

+
Ω + Ω + + Ω +Ω +

+

 [11] 

 

And since BA BM M=  (see Figure 3), Equation [11] can be rewritten in the following form. 

AB BC C/B AB B/A BC
B

AB BC BC AB AB BC

AB BC AB BA A BC AB BC CB C

BC AB AB BC

6EI I ( L L )M
2L L (I L I L )

L I ( 2 M ) L I (2 M )
2(I L I L )

∆ −∆
= −

+

Ω + Ω + + Ω +Ω +
+

 [12] 

 

By rearranging the terms of the above equation, we can obtain the generalized form of the three-
moment equation, as shown in Equation [13]. 
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BC BC C/B B/AAB AB AB
A B C AB BA

AB AB BC BC BC AB AB

BC
BC CB

BC

L L 6E 6EL L LM 2( )M M ( 2 )
I I I I L L I

L (2 )
I

∆ ∆
+ + + = − − Ω + Ω −

Ω +Ω

 [13] 

 

Let’s see how Equation [13] can be used to analyze continuous beams with support reactions.  

Example 1: Consider the beam shown below. Suppose the support at B has settled 10 mm. We 
wish to calculate the support reactions due to the settlement without considering the applied 
loads. The beam has a constant EI in which E is 200 GPa, and I = 0.0001 m4.  

 

 

 

  
Figure 4: A two-span continuous beam 

We start by drawing the internal moments at the supports, as shown below. 

 

 

 

  
Figure 5: Internal bending moments in a two-span beam 

In this case, since there is a pin at A and a roller at C, A CM M 0= = . Furthermore, since we are 
not considering the effect of the applied loads on the support reaction forces, all the fixed-end 
moment terms in Equation [13] are assumed to be zero. Therefore, the three-moment equation 
can be written in the simplified form shown below. 

BC C/B B/AAB
B

AB BC BC AB

L 6E 6EL2( )M
I I L L

∆ ∆
+ = −  [14] 

 

To determine A/BΔ and C/BΔ , we need to examine each beam segment separately. Segment AB 
rotates clockwise as a result of the settlement at support B (see Figure 6). And since clockwise is 
considered negative direction for rotation according to the slope-deflection sign convention, 

B/A∆ is negative. That is, B/AΔ 10 mm 0.01m=− =− . 
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Figure 6: Segment rotations in a two-span beam due to a support settlement 

 

And since segment BC rotates counterclockwise due to the settlement at B, C/BΔ  is considered 
positive. Hence, C/BΔ 0.01m= . Consequently, Equation [14] can be expanded as follows.  

9 9

B
10 10 6(200 10 )(0.01) 6(200 10 )( 0.01)2( )M

0.0001 0.0001 10 10
× × −+ = −  [15] 

 

Solving Equation [15] for BM , we get: BM 6000 N.m= , or BM 6 kN.m= .  

Figure 7 shows the resulting free-body diagrams for Segments AB and BC.   

 

 

 

 

Figure 7: Internal bending moments in a two-span beam 

 

The above diagrams can be used to calculate the member-end shear forces. This is done by 
writing and solving the static equilibrium equations for each segment. For segment AB, the 
equations can be written in the following manner.  

BA6 10V 0− =   [16] 

AB BAV V 0− =   [17] 
 

Solving the above equations for the two shear forces, we get: BAV 0.6 kN=  and ABV 0.6 kN= . 
Similarly, the equilibrium equations for segment BC are as follows. 

BC6 10V 0− =   [18] 

CB BCV V 0− =   [19] 
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Equations [18] and [19] yield: BCV 0.6 kN=  and CBV 0.6 kN= .  

The reaction force at A equals ABV  . At B, the reaction force is the sum of BAV and BCV . And at 
C, the reaction equals CBV . The following diagram shows the support reactions due to the 
settlement at B. 

 

 

 

 

Figure 8: Support reaction due to a support settlement in a two-span beam 

 

Example 2: Consider the beam shown below. It rests on a fixed support at A and on rollers at B 
and C. Suppose the support at B has a downward settlement of 10 mm, and the support at C has 
settled 4 mm. We wish to calculate the support reactions due to the applied load and the 
settlements. The beam has a constant EI in which E is 200 GPa and I = 0.0001 m4. 

 

 

  
 

Figure 9: A continuous beam with a fixed support 

 
To use the three-moment equation, we need to replace the fixed support at A with a fictitious 
infinitely rigid beam segment (see Figure 10).  

 

  
 

  
  

Figure 9: A continuous beam with a fictitious infinitely rigid beam segment 

Now we can write two three-moment equations: one equation for the left two segments and 
another equation for the right two segments.  

For the left two segments, Equation [13] can be written as shown below. 
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0 0 0 0

0 0 0

0 0 0 0

A A A A A/A A AB/AAB AB
A A B A A AA

A A A A AB AB AB A A A A

AB
AB BA

AB

L L 6E L6EL LM 2( )M M ( 2 )
I I I I L L I

L (2 )
I

∆∆
+ + + = − − Ω + Ω −

Ω +Ω

 [20] 

Since
0AM 0=  ,

0A AI =∞ , and fixed-end moments 
0A AΩ  , 

0AAΩ , ABΩ  and BAΩ are zero, the above 
equation simplifies to Equation [21]. 

0

0

A/AB/AAB AB
A B

AB AB AB A A

6E6EL L2( )M M
I I L L

∆∆
+ = −  [21] 

 

Assuming that 
0Aδ , Aδ , and Bδ  are vertical settlements at supports 0A , A, and B respectively, 

we can determine 
0A/AΔ  and B/AΔ using the following equations. 

0 0A/A A AΔ δ δ 0 0 0= − = − =   [22] 

B/A A BΔ δ δ ( 0.01) 0 0.01= − = − − =−   [23] 
 

By substituting the values for 
0A/AΔ , B/AΔ , ABI , ABL , and E in Equation [21], the following 

equation results. 
6

A B
4 4 6(200 10 )( 0.01)2( )M M

0.0001 0.0001 4
× −

+ =  [24] 

 

In its simplified form, Equation [24] turns into Equation [25], which is one of the two equations 
we need to solve the problem.  

A B2M M 75+ =−   [25] 
  

The three-moment equation for the two right segments is shown below. 

BC BC C/B B/AAB AB AB
A B C AB BA

AB AB BC BC BC AB AB

BC
BC CB

BC

L L 6E 6EL L LM 2( )M M ( 2 )
I I I I L L I

L (2 )
I

∆ ∆
+ + + = − − Ω + Ω −

Ω +Ω

 [26] 

 

Since segment BC is subjected to a distributed load, the fixed-end moments for the segment are 
not zero; instead, they are: 2

BC CBΩ Ω (3)(6 )/12 9 kN.m= = = . However, the fixed-end moments for 
segment AB are zero, as the segment is not subjected to any loads. Therefore, we can write: 

AB BAΩ Ω 0= = . 
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Furthermore, B/AΔ  and C/BΔ  can be calculated as shown below. 

B/A B AΔ δ δ ( 0.01) 0 0.01= − = − − =−   [27] 

C/B C BΔ δ δ ( 0.004) ( 0.01) 0.006= − = − − − =   [28] 
 

After making the necessary substitutions in Equation [26], the following equation results. 

6
A B

4 4 6 0.006 0.01 6M 2( )M 6(200 10 )( ) (2 9 9)
0.0001 0.0001 0.0001 6 4 0.0001

+ + = × + − × +  [29] 

 

Which can be simplified to: 

A BM 5M 64.5+ =   [30] 
 

By solving Equations [25] and [30] simultaneously, we can determine AM  and BM  as follows:

AM 44.83 kN.m=−  and BM 22.67 kN.m= . Now the resulting free-body diagrams for the two 
beam segments can be drawn as shown below. 

 

 

 

 

Figure 10: Internal bending moments in a continuous beam with a fixed end 

Using the static equilibrium equations, we can determine the member-end shear forces and the 
support reactions for the beam. Figure 11 shows the resulting reaction forces for the beam. 

 

 

 

 

  
Figure 11: Support reactions for a continuous beam with a fixed end 

 


