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Structural Analysis – SA57 
(Reaction Influence Line for Continuous Beams) 

This lecture examines the procedure for constructing reaction influence lines for continuous beams. 

Consider a two-span continuous beam with vertical reactions at A, B, and C, as shown in Figure 1. We 
can qualitatively draw each reaction influence line with ease. Similar to the procedure for a determinate 
beam, we push the beam upward by a unit force at the support and draw the resulting deformation. In 
doing so, we assume the beam is no longer restrained by the support and can move upwards. Figure 1 
shows the influence lines for the reaction forces at A, B, and C. Note that unlike the case of determinate 
beams, the resulting deformation of a continuous beam is nonlinear. 

 
 

Figure 1: Reaction influence lines for the beam 
 

Diagrams are an excellent way to view influence lines qualitatively; however, they are of limited use for 
analyzing the effects of a concentrated moving load on a beam. Let’s look at why this may be the case. 

Suppose we wish to determine the maximum reaction force at B due to a moving load. The influence 
line shows that the maximum reaction at B occurs when the load is positioned at D (see Figure 2). But 
where is the exact location of D? Because the diagram is qualitatively drawn, it does not provide this 
information. To determine the location of the maximum force, we need to derive a mathematical 
equation for representing the influence line. 
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Figure 2: Location of the maximum height of the influence line for the reaction force at B 
 

Similarly, if we want to determine the maximum downward (negative) reaction force at A due to a 
concentrated moving load, we need an equation for the influence line. The position of the lowest point 
on the diagram cannot be ascertained from the diagram alone (See Figure 3). 
 

 

Figure 3: Location of the minimum height of the influence for the reaction force at A 
 
So, how do we write a mathematical expression for a reaction influence line?  
 
It’s simple! We must first parametrically analyze the beam using, for example, the slope-deflection 
method. If you are unfamiliar with this method, please review Lectures SA27 through SA33. You can find 
the video lectures on the Lab101.space website. 

Let’s denote the position of the unit load relative to the left end of the beam as 𝑛𝑛, where 0 ≤ 𝑛𝑛 ≤ 8    (see 
Figure 4). 

 

Figure 4: A two-span continuous beam subjected to a unit load 
 
The beam consists of two spans: AB and BC. Therefore, we must write a pair of slope-deflection equations 
for each span. For Span AB, these are: 

𝑀𝑀𝐴𝐴𝐴𝐴 =
2𝐸𝐸𝐸𝐸

2
(2𝜃𝜃𝐴𝐴 + 𝜃𝜃𝐵𝐵) + 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 [1] 

𝑀𝑀𝐵𝐵𝐵𝐵 =
2𝐸𝐸𝐸𝐸

2
(𝜃𝜃𝐴𝐴 + 2𝜃𝜃𝐵𝐵) + 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵 [2] 
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where 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐵𝐵 are the end rotations, and 𝑀𝑀𝐴𝐴𝐴𝐴 and 𝑀𝑀𝐵𝐵𝐵𝐵 are the end moments for Span AB (see Figure 
5). 

  

Figure 5: Member-end moments for AB 
 
For the fixed-end moments (𝐹𝐹𝐹𝐹𝐹𝐹 ) in the above equations, a concentrated load acting on the beam can 
lead to two scenarios. 
 
Scenario 1: When 𝑛𝑛 ≥ 2, 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵 = 0. This is true when the load acts not on Span AB but Span 
BC. 

Scenario 2: When 𝑛𝑛 ≤ 2, the fixed-end moments can be computed using the following equations: 

 𝐹𝐹𝐹𝐹𝑀𝑀𝐴𝐴𝐴𝐴 =
𝑛𝑛(2 − 𝑛𝑛)2

4
 [3] 

 𝐹𝐹𝐹𝐹𝑀𝑀𝐵𝐵𝐵𝐵 =
−(2 − 𝑛𝑛)𝑛𝑛2

4
 [4] 

A graphical representation of the fixed-end moments is shown in Figure 6. 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 =
𝑃𝑃𝑃𝑃𝑏𝑏2

𝐿𝐿2
 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵 =

𝑃𝑃𝑎𝑎2𝑏𝑏
𝐿𝐿2

 

Figure 6: Fixed-end moment equations for Span AB 
 
We also need to write a pair of slope-deflection equations for Span BC, as follows: 
 

𝑀𝑀𝐵𝐵𝐵𝐵 =
2𝐸𝐸𝐸𝐸

6
(2𝜃𝜃𝐵𝐵 + 𝜃𝜃𝜃𝜃) + 𝐹𝐹𝐹𝐹𝑀𝑀𝐵𝐵𝐵𝐵 [5] 

𝑀𝑀𝐶𝐶𝐶𝐶 =
2𝐸𝐸𝐸𝐸

6
(𝜃𝜃𝐵𝐵 + 2𝜃𝜃𝜃𝜃) + 𝐹𝐹𝐹𝐹𝑀𝑀𝐶𝐶𝐶𝐶 [6] 

For this span, the fixed-end moments are shown in Figure 7. 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵 =
1

36
(𝑛𝑛 − 2)(8 − 𝑛𝑛)2 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 =
−1
36

(𝑛𝑛 − 2)2(8− 𝑛𝑛) 

Figure 7: Fixed-end moment equations for Span BC 
 
The member-end moments for BC are shown in Figure 8. 

 

Figure 8: Member-end moments for BC 
 

Similar to Span AB, when 𝑛𝑛 ≤ 2, the fixed-end moments in Equations [5] and [6] are zero. Otherwise, we 
must use the expressions given in Figure 7. 

Since the beam has three support joints, we need to write three (3) moment equilibrium equations, one 
per support (see Figure 9). 

 

Figure 9: Member-end moments at the supports 
 
The equilibrium equations are: 

 𝛴𝛴𝑀𝑀@𝐴𝐴 = 𝑀𝑀𝐴𝐴𝐴𝐴 = 0 [7] 

 𝛴𝛴𝑀𝑀@𝐵𝐵 = 𝑀𝑀𝐵𝐵𝐵𝐵 +𝑀𝑀𝐵𝐵𝐵𝐵 = 0 [8] 
 𝛴𝛴𝑀𝑀@𝐶𝐶 = 𝑀𝑀𝐶𝐶𝐶𝐶 = 0 [9] 

When expanded, these equations can be written as two distinct sets of equations that depend on the 
value of 𝑛𝑛. For 𝑛𝑛 ≤ 2, we obtain: 
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2𝐸𝐸𝐸𝐸

2
(2𝜃𝜃𝐴𝐴 + 𝜃𝜃𝐵𝐵) +

𝑛𝑛(2 − 𝑛𝑛)2

4
= 0 [10] 

 
2𝐸𝐸𝐸𝐸

2
(𝜃𝜃𝐴𝐴 + 2𝜃𝜃𝐵𝐵)−

(2 − 𝑛𝑛)𝑛𝑛2

4
+

2𝐸𝐸𝐸𝐸
6

(2𝜃𝜃𝐵𝐵 + 𝜃𝜃𝐶𝐶) = 0 [11] 

 
2𝐸𝐸𝐸𝐸

6
(𝜃𝜃𝐵𝐵 + 2𝜃𝜃𝐶𝐶) = 0 [12] 

For 𝑛𝑛 ≥ 2, we obtain: 
 

 
2𝐸𝐸𝐸𝐸

2
(2𝜃𝜃𝐴𝐴 + 𝜃𝜃𝐵𝐵) = 0 [13] 

 
2𝐸𝐸𝐸𝐸

2
(𝜃𝜃𝐴𝐴 + 2𝜃𝜃𝐵𝐵) +

2𝐸𝐸𝐸𝐸
6

(2𝜃𝜃𝐵𝐵 + 𝜃𝜃𝐶𝐶) +
1

36
(𝑛𝑛 − 2)(8 − 𝑛𝑛)2 = 0 [14] 

 
2𝐸𝐸𝐸𝐸

6
(𝜃𝜃𝐵𝐵 + 2𝜃𝜃𝐶𝐶) −

1
36

(𝑛𝑛 − 2)2(8− 𝑛𝑛) = 0 [15] 

 
The solution to the first set of equations is: 

 �
𝜃𝜃𝐴𝐴
𝜃𝜃𝐵𝐵
𝜃𝜃𝑐𝑐
� =

𝑛𝑛
32𝐸𝐸𝐸𝐸 �

(𝑛𝑛 − 2)(10 − 3𝑛𝑛)
2(4 − 𝑛𝑛2)
𝑛𝑛2 − 4

�             𝑛𝑛 ≤ 2 [16] 

 
For the second set, we get: 

 �
𝜃𝜃𝐴𝐴
𝜃𝜃𝐵𝐵
𝜃𝜃𝐶𝐶
� =

𝑛𝑛 − 2
288𝐸𝐸𝐸𝐸 �

112 − 22𝑛𝑛 + 𝑛𝑛2
2(−112 + 22𝑛𝑛 − 𝑛𝑛2)
−(80− 98𝑛𝑛 + 11𝑛𝑛2)

�        𝑛𝑛 ≥ 2 [17] 

Substituting these solutions back into the slope-deflection equations, we define the member-end 
moments. For Set 1, we obtain: 

 �

𝑀𝑀𝐴𝐴𝐴𝐴
𝑀𝑀𝐵𝐵𝐵𝐵
𝑀𝑀𝐵𝐵𝐵𝐵
𝑀𝑀𝐶𝐶𝐶𝐶

� =
𝑛𝑛

32�

0
𝑛𝑛2 − 4
4 − 𝑛𝑛2

0

�             𝑛𝑛 ≤ 2     [18] 

For Set 2, we have: 

 �

𝑀𝑀𝐴𝐴𝐴𝐴
𝑀𝑀𝐵𝐵𝐵𝐵
𝑀𝑀𝐵𝐵𝐵𝐵
𝑀𝑀𝐶𝐶𝐶𝐶

� =
(2 − 𝑛𝑛)

96 �

0
112 − 22𝑛𝑛 + 𝑛𝑛2
−112 + 22𝑛𝑛 − 𝑛𝑛2

0

�       𝑛𝑛 ≥ 2 [19] 

Now that we know the member-end moments, we can easily determine the reaction forces at A and C. 
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Figure 10: Free-body diagram of the beam segments for Equation Set 1 

The two free-body diagrams presented in Figure 10 enable us to write the following equilibrium 
equations: 

 𝑀𝑀𝐵𝐵𝐵𝐵 + 1(2 − 𝑛𝑛) − 2𝑅𝑅𝐴𝐴 = 0 [20] 
 𝑀𝑀𝐵𝐵𝐵𝐵 + 6𝑅𝑅𝐶𝐶 = 0 [21] 

 
Solving for 𝑅𝑅𝐴𝐴 and 𝑅𝑅𝐶𝐶 , we get: 

 𝑅𝑅𝐴𝐴 = (𝑛𝑛3 − 36𝑛𝑛 + 64) 64⁄     𝑛𝑛 ≤ 2 [22] 
 𝑅𝑅𝑐𝑐 = (𝑛𝑛3 − 4𝑛𝑛) 192⁄               𝑛𝑛 ≤ 2 [23] 

Moreover, since the sum of the forces for the entire beam must vanish in the y-direction, we can write: 

 𝑅𝑅𝐵𝐵 = 1 − 𝑅𝑅𝐴𝐴 − 𝑅𝑅𝐶𝐶 [24] 
 𝑅𝑅𝐵𝐵 = (28𝑛𝑛 − 𝑛𝑛3) ∕ 48           𝑛𝑛 ≤ 2 [25] 

We need to develop another set of algebraic equations for the support reactions based on the second 
solution. Figure 11 shows the free-body diagrams of the two beam spans with the unit load on the right 
span.  

 

Figure 11: Free-body diagram of the beam segments for Equation Set 2 
 

The following equilibrium equations can be used to yield the support reactions at A and C: 

 𝑀𝑀𝐵𝐵𝐵𝐵 − 2𝑅𝑅𝐴𝐴 = 0 [26] 
 𝑀𝑀𝐵𝐵𝐵𝐵 + 6𝑅𝑅𝐶𝐶 − 1(𝑛𝑛 − 2) = 0 [27] 

Solving the above equations for 𝑅𝑅𝐴𝐴 and 𝑅𝑅𝐶𝐶 , we obtain: 

 𝑅𝑅𝐴𝐴 = (2 − 𝑛𝑛)(𝑛𝑛2 − 22𝑛𝑛 + 112)/192        𝑛𝑛 ≥ 2 [28] 
 𝑅𝑅𝑐𝑐 = (−𝑛𝑛3 + 24𝑛𝑛2 − 60𝑛𝑛 + 32) 576⁄       𝑛𝑛 ≥ 2  [29] 

Then we can write: 
 𝑅𝑅𝐵𝐵 = 1 − 𝑅𝑅𝐴𝐴 − 𝑅𝑅𝐶𝐶 [30] 

Or, 
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 𝑅𝑅𝐵𝐵 = (𝑛𝑛3 − 24𝑛𝑛2 + 132𝑛𝑛 − 32) ∕ 144 [31] 
 
In summary, the support reactions can be expressed in terms of the load moving load (𝑛𝑛) as 

 
𝑅𝑅𝐴𝐴 = �

(𝑛𝑛3 − 36𝑛𝑛 + 64) 64⁄                        𝑛𝑛 ≤ 2
(2 − 𝑛𝑛)(𝑛𝑛2 − 22𝑛𝑛 + 112)/192 𝑛𝑛 ≥ 2

 [32] 

 
𝑅𝑅𝐵𝐵 = �

(28𝑛𝑛 − 𝑛𝑛3) ∕ 48                       𝑛𝑛 ≤ 2
(𝑛𝑛3 − 24𝑛𝑛2 + 132𝑛𝑛 − 32)/144 𝑛𝑛 ≥ 2

 [33] 

 
𝑅𝑅𝐶𝐶 = �

(𝑛𝑛3 − 4𝑛𝑛) ∕ 192                       𝑛𝑛 ≤ 2
(−𝑛𝑛3 + 24𝑛𝑛2 − 60𝑛𝑛 + 32)/576 𝑛𝑛 ≥ 2

 [34] 

 
Now we are ready to determine the maximum effect of a moving load on the reactions. 

Suppose our beam is a part of a bridge that must be able to carry a maximum vehicular load of 20 kN. 
We must determine the maximum upward and downward reaction forces that could develop at A (see 
Figure 12). 

Observing the influence line for the reaction force, we can see that the maximum upward reaction 
occurs at A when the concentrated load is acting at A (see Figure 12). The magnitude of the reaction 
force is 1 × 20 = 20 kN. 

 

Figure 12: Load position for creating the maximum upward reaction at A 
 
To determine the position of the load that causes the maximum downward reaction to develop at A, we 
need to locate the position on the diagram where the minimum reaction occurs. By visually inspecting 
the diagram, we see that the position is located between B and C and therefore governed by the second 
reaction equation. Thus, taking the derivative of the equation and setting it equal to zero, we can find 
the position that minimizes the function as follows: 

 𝑑𝑑
𝑑𝑑𝑛𝑛

(2 − 𝑛𝑛)(𝑛𝑛2 − 22𝑛𝑛 + 112) 192� =
1

64
(−52 + 16𝑛𝑛 − 𝑛𝑛2) = 0 [35] 
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Solving Equation [35] for 𝑛𝑛, we get 𝑛𝑛 = 8 − 2√3 ≈ 4.53. 

The function for reaction at A (Equation [32]) evaluated at 𝑛𝑛 = 4.53 yields  

𝑅𝑅𝐴𝐴 = −
√3
4
≈ −0.43 

Therefore, the maximum downward (negative) reaction force at A equals 0.43(20) = −8.66 kN (see 
Figure 13). 

 

Figure 13: Load position for creating the maximum downward reaction at A 
 
We also need to find the maximum upward reaction at B. The maximum height of the influence line is 
located in Segment BC, as shown in Figure 14. This means that we need to take the derivative of the 
second reaction equation, set it equal to zero and solve for 𝑛𝑛, as follows: 

 𝑑𝑑
𝑑𝑑𝑛𝑛

(𝑛𝑛3 − 24𝑛𝑛2 + 132𝑛𝑛 − 32) ∕ 144 =
1

48
(44 − 16𝑛𝑛 + 𝑛𝑛2) = 0 [36] 

Equation [36] yields 𝑛𝑛 = 8 − 2√5 ≈ 3.53. Equation [33] evaluated at 𝑛𝑛 = 3.53 yields: 

𝑅𝑅𝐵𝐵 =
5√5

9
≈ 1.24 

Therefore, the maximum upward reaction at B is 1.24(20) = 24.85 kN (see Figure 14). 
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Figure 14: Load position for creating the maximum upward reaction at B 

If you want to see how the influence lines change shape as the position of the roller support at B 
changes, go to the interactive webpage referenced below. 

https://Lab101.Space/iexamples/SA57/index.html 

https://lab101.space/iexamples/SA57/index.html

